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Resolving the detailed hydrodynamics of a slender body immersed in highly-viscous
Newtonian fluid has been the subject of extensive research, applicable to a broad
range of biological and physical scenarios. In this work, we expand upon classical
theories developed over the past fifty years, deriving an algebraically-accurate slender-
body theory that may be applied to a wide variety of body shapes, ranging from
biologically-inspired tapering flagella to highly-oscillatory body geometries with only
weak constraints, most-significantly requiring that cross sections be circular. Inspired by
well-known analytic results for the flow around a prolate ellipsoid, we pose an ansatz for
the velocity field in terms of a regular integral of regularised Stokes-flow singularities with
prescribed, spatially-varying regularisation parameters. A detailed asymptotic analysis is
presented, seeking a uniformly-valid expansion of the ansatz integral, accurate at leading
algebraic order in the geometry aspect ratio, to enforce no slip boundary conditions
and thus analytically justify the slender-body theory developed in this framework. The
regularisation within the ansatz additionally affords significant computational simplicity
for the subsequent slender-body theory, with no specialised quadrature or numerical
techniques required to evaluate the regular integral. Furthermore, in the special case of
slender bodies with a straight centreline in uniform flow, we derive a slender-body theory
that is particularly straightforward via use of the analytic solution for a prolate ellipsoid.
We evidence the validity of our simple theory by explicit numerical example for a wide
variety of slender bodies, and highlight a potential robustness of our methodology beyond
its rigorously-justified scope.

1. Introduction

The problem of determining the fluid flow around slender bodies with approximately-
circular cross sections in a zero Reynolds number environment has been central to many
biological and physical contexts, such as flagellate motility (Gillies et al. 2009; Smith
et al. 2009) and soft deformable sensors (Guglielmini et al. 2012; Roper et al. 2006). Since
the advent of their study, there have been significant advances in both the asymptotic
and the numerical methods used to analyse such bodies, many of which exploit a small
slenderness ratio ε. This quantity is defined to be the ratio of the maximum cross-sectional
radius of the body and the half-length of the centreline, invariably taken to be much
less than unity. This assumption holds for many biological and physical applications,
for example the slender flagella of mammalian spermatozoa (Cummins & Woodall 1985),
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with slender-body theories thus having wide-ranging potential applications in the physical
and biological sciences.

The early theoretical study of Keller & Rubinow (1976) considered a locally cylindrical
object with a curvilinear centreline, calculating solutions near-to and far-from the surface
of the body. This led to an integral equation relating the flow field to the force per unit
length on the body, enabling iterative calculations of the force per unit length on a moving
slender body and, ultimately, the accompanying flow field. Analogous calculations in less
general settings have also been performed by Cox (1970) and Lighthill (1976), each
representing marked improvements over the resistive coefficients of Gray & Hancock
(1955); Hancock (1953). Each of these early methods, however, had sizeable inaccuracies
at the body endpoints, where surface velocities are predicted to be infinite due to the
use of purely-cylindrical geometries. The theory of Johnson (1980) addressed such issues,
offering an improved slender-body theory with algebraic accuracy and reduced end errors.

In this work of Johnson, and indeed in what will follow in this study, an ansatz for the
fluid velocity field is motivated by the solution of Chwang & Wu (1975) for the Stokes
flow around prolate spheroids, with the flow field represented by an integral of Stokeslet
and potential dipole singularities. These integrals range over the centreline between two
effective foci, rather than the entire body length, which, as long as the ends of the
body are prolate spheroidal caps, circumvents pathological end errors. Johnson’s analysis
splits the slender body into a central section and two end regions, with the weighting of
the potential dipole changing between them. In this theory, arclength-dependent cross-
sectional radius functions, denoted here by η(s) for arclength s, can be prescribed along
the body, but must satisfy the condition that their derivative dη/ds vanishes at, and
only at, the centre of the slender body. This restriction of Johnson’s theory prohibits the
modelling, for example, of many biologically realistic shapes, including tapered flagella,
asymmetric cells, and wave-like or ribbed structures. Indeed, such shapes remain absent
even from the scope of recent works that have expanded slender-body theories to non-
circular cross sections (Borker & Koch 2019; Koens & Lauga 2016). Overcoming this
significant limitation on the scope of slender theories represents the primary objective of
this study, aiming to broaden the range of biological and physical systems that may be
justifiably modelled with slender-body theory.

The simulation of more-complex slender geometries is already possible using methods
of greater computational complexity, for example the high-accuracy but computationally-
expensive boundary element method (Pozrikidis 2002). A commonplace approach, repre-
senting a balance between efficiency, accuracy, and flexibility, is the method of regularised
Stokeslets, which has seen widespread use in the study of both slender and non-slender
bodies (Cortez & Nicholas 2012; Gillies et al. 2009; Ishimoto & Gaffney 2018; Olson
et al. 2013), though there remains a notable weakness associated with this regularised
methodology. Whilst the freedom in the choice of mollifier used has been explored
extensively by Zhao et al. (2019), lacking from the literature is a rigorous justification
for any particular choice of regularisation parameter, with studies typically opting to use
a constant characteristic lengthscale. In this work, we will aim to address this gap in
current understanding, identifying choices of regularisation parameter that will enforce a
commonly applied boundary condition on the surface of a slender body to leading order
subject to a flow-field ansatz.

Hence, in this study, we will derive and present a slender-body theory that is applicable
to a wider range of geometries than have previously been permissible in such theories,
exploiting regularised singularities and giving an appropriate choice of regularisation
parameter that encodes the body shape. Representing a stark contrast to previous uses
of regularised singularities, here we will aim to satisfy a leading-order no-slip boundary
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Figure 1: Describing a slender body with circular cross section of arclength dependent radius η(s), centreline
ξ(s), and cross-sectional angle φ. Points on the surface of the body are parameterised as X(s, φ), where
s ∈ [−L,L] is an arclength parameter.

condition on the body surface, with the regularisation parameter explicitly accounting for
variations in cross-sectional radius with arclength. For a special but physically pertinent
class of slender bodies that are rigid with a straight centreline, we additionally derive a
surprising analytic solution, in this case circumventing the need for numerical solution
methods and enabling the direct evaluation of regularised Stokeslet weightings. We will
evidence the validity of our slender-body theory by explicit numerical evaluation of
the surface velocity for a range of non-uniform slender bodies, exploiting the smooth
integrand in order to make use of non-specialised quadratures, representing a significant
improvement in computational complexity over existing slender-body theories that make
use of singular integral kernels.

2. The slender-body problem

2.1. Describing the slender body

Consider a three-dimensional slender body with centreline ξ(s), where s ∈ [−L,L] is
an arclength parameter along the centreline and L is the half-length of the object. We
assume local axisymmetry about the centreline, so that the cross section at any point
is circular and in a plane transverse to the centreline at arclength s. Hence the shape is
wholly defined by the centreline and the non-negative cross-sectional radius η(s), with
this latter function having zeros at s = ±L. The assumption of slenderness is captured
via the aspect ratio ε, defined here as

ε =
maxs∈[−L,L]{η(s)}

L
(2.1)

and taken to be significantly less than unity, i.e. ε� 1.
In an inertial reference frame, which will remain consistent throughout this work, the

instantaneous fluid velocity field at the point x is denoted u(x) and governed by the
familiar dimensional Stokes equations

∇ · u = 0 , 0 = −∇p+ µ∇2u , (2.2)

where p(x) is the accompanying pressure field and µ is the dynamic viscosity of the fluid,
here assumed constant. We will impose the no-slip boundary condition on the surface of
the slender body, though first introduce further notation in order to write this succinctly.

Denoting unit tangent, normal, and binormal vectors to the curved centreline of the
slender body as et(s), en(s), and eb(s), respectively, the orthonormal triad {et, en, eb}
satisfies the standard Frenet-Serret relations

et(s) =
∂ξ

∂s
,

∂et
∂s

= κ(s)en(s), eb(s) = et(s)× en(s) , (2.3)



4 B. J. Walker, M. P. Curtis, K. Ishimoto, and E. A. Gaffney

where κ(s) is the centreline curvature. We additionally define a radial unit vector er,
embedded in a transverse cross section to the centreline, in terms of a cross-sectional
angle φ as

er(s, φ) = en(s) cosφ+ eb(s) sinφ . (2.4)

Throughout, we will assume that the slender body is inextensible and unshearable, so
that material cross sections are always perpendicular to the centreline tangent (Antman
2005). Under this assumption, as exemplified in figure 1, we parameterise the surface of
the body explicitly as

X(s, φ) = ξ(s) + η(s)er(s, φ) , (2.5)

and write U(s, φ) for the surface velocity in the inertial frame at this point X(s, φ). This
velocity may be decomposed as

U(s, φ) = V (s) +Ω(s)× η(s)er(s, φ) , (2.6)

where V (s) andΩ(s) are the translational and angular velocity components, respectively,
with the latter measured about the centreline point ξ(s). Here V (s) represents the
velocity of the centreline, which may vary with arclength due to non-uniform background
flows or centreline motion such as that in a beating flagellum. Similarly, the angular
velocity Ω(s) also varies with arclength in general, though we will later see that these
effects, and indeed the angular velocity in its entirety, will be subleading with respect to
the body slenderness parameter.

We may now succinctly formulate the no-slip boundary condition on the surface of the
body. We impose that the fluid velocity on the surface of the slender body must exactly
equal the surface velocity, a condition that may be stated simply as

u(X(s, φ)) = U(s, φ) . (2.7)

2.2. Nondimensionalisation

We nondimensionalise lengths via the half-length, L, writing s = Lŝ for dimensionless
arclength variable ŝ ∈ [−1, 1] and explicitly decomposing the cross-sectional radius as

η(s) = Lη̂(ŝ) = εLη̃(ŝ) , (2.8)

for dimensionless η̂, η̃. Recalling that the cross-sectional radius is at most εL over the
slender body, where we assume ε� 1, we have η̃ ∈ [0, 1] by construction with the upper
bound tight.

All velocities are nondimensionalised via a typical velocity scale, U , with the expression
for the surface velocity (2.6) given in nondimensional form as

Û(ŝ, φ) = V̂ (ŝ) + εΩ̂(ŝ)× η̃(ŝ)er(ŝ, φ) . (2.9)

Throughout we adopt the standard viscous flow pressure field scaling µU/L, and hence-
forth will exclusively consider dimensionless quantities and thus drop the somewhat
cumbersome ·̂ and ·̃ notation for dimensionless variables. For completeness, we note that
the dimensionless form of (2.5) is now

X(s, φ) = ξ(s) + εη(s)er(s, φ) , (2.10)

from which the slenderness of the body is evident.
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2.3. Leading-order problem

Assuming that the translational and angular velocities of the slender body are each
O(1) as ε→ 0, the dimensionless surface velocity given in (2.9) reduces to

U(s, φ) = V (s) +O(ε) , (2.11)

so that the leading-order boundary condition on the body may be written as

u(X(s, φ)) = V (s) +O(ε) (2.12)

for φ ∈ [0, 2π) and s ∈ [−1, 1]. Thus, at leading order, the surface velocity of the slender
body is equal to the velocity of the centreline for each s, and henceforth we will consider
only this leading-order problem. We do however note that, by linearity of the Stokes
equations, a solution of this reduced problem corresponds to a leading-order solution of
the full motion of the slender body, and is exact for bodies undergoing pure translational
motion.

3. A regularised theory

3.1. Johnson’s approach

We now outline the methodology of Johnson (1980), and will later seek to adapt the
approach to admit a wider range of cross-sectional radius functions. Johnson begins
by posing an ansatz for the leading-order velocity field based on the exact singularity
representation for the flow field around a translating prolate spheroid given by Chwang
& Wu (1975). Fundamental to this expression are well-known singularities of Stokes flow,
the Stokeslet, here written S0, and the potential dipole, denoted D0, defined respectively
as

S0(x,y) =
I

|x− y|
+

Q(x,y)

|x− y|3
, D0(x,y) = − I

|x− y|3
+

3Q(x,y)

|x− y|5
, (3.1)

where Q(x,y) = (x−y)⊗(x−y) for points x and y and I is the identity tensor. Johnson’s
analysis is limited initially to slender bodies with cross-sectional radius functions that
approach prolate spheroids towards the ends of the body, i.e.

η2(s)→ (1− s2)(1 +O(ε2)) for s→ ±1 , (3.2)

though a further, more-significant restriction on η later arises. By splitting the centreline
into central and end regions, Johnson derives the uniformly-valid algebraically-accurate
flow field as

u(x) ∼
e∫
−e

S0(x, ξ(s′))α(s′) +W (s′)D0(x, ξ(s′))β(s′) ds′, (3.3)

where W is some scalar weight function and α,β are the unknown strengths of the
distributions of singular Stokeslets and potential dipoles respectively, each of which may
vary along the centreline. The limits of integration in (3.3) are given by the quantity
e =

√
1− ε2, corresponding to the eccentricity of a prolate ellipsoid with minor axes

ε and hence termed the effective eccentricity of the slender body. Significantly, these
integration limits do not include the singular endpoints s′ = ±1, ensuring that the
velocity flow-field ansatz (3.3) is regular.

Upon enforcing the leading-order boundary condition from (2.12), Johnson notes that
the resulting integral must be independent of the cross-sectional angle φ in order to
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give a well-defined slender-body theory, with no-slip giving α(s) to leading order. This
condition, after some manipulation, necessitates the relation

β(s) =
(1− e2)

2

s

1− s2

η(s)

η′(s)
α(s) , (3.4)

here differing in sign to the original expression of Johnson (1980) due to contrasting
definitions of the potential dipole. This simple relation allows the resulting integral
equation from the boundary condition to be cast in terms of a single unknown quantity,
the Stokeslet strength, α(s), which may then be solved for and the resulting flow field
determined everywhere outside and on the slender body.

However, there is an additional inherent constraint on the prescribed cross-sectional
radius function, in that the expression given in (3.4) must not attain singular values for
s ∈ [−e, e]. As η(s) > 0 for s ∈ (−1, 1), noting in particular that this inequality is strict,
η′(s) may have a zero only at s = 0, necessarily accompanied by a suitable condition on
the limit of s/η′(s) for s ∈ [−e, e]\{0}. This significantly restricts the range of permissible
shapes allowed in the slender-body theory of Johnson (1980), excluding for example the
tapered flagella of mammalian sperm (Fawcett 1970).

3.2. The prolate ellipsoid in uniform flow

Before moving to generalise Johnson’s slender body theory, we state the analytic result
of Chwang & Wu (1975) that pertains to uniform flow around a straight translating
prolate ellipsoid, which will be instructive in later analysis. With VP denoting the
constant background flow and ξP (s) denoting the straight centreline, the classical work
of Chwang & Wu (1975) shows that, for any s ∈ [−1, 1] and φ ∈ [0, 2π),

VP =

e∫
−e

[
S0(XP (s, φ), ξP (s′))− 1− e2

2e2
(e2 − s′2)D0(XP (s, φ), ξP (s′))

]
αP ds′ (3.5)

has exact solution given by

αP =

[
et ⊗ et

−2e+ (1 + e2) log 1+e
1−e

+
2(I − et ⊗ et)

2e+ (3e2 − 1) log 1+e
1−e

]
VP , (3.6)

written with respect to the constant orthonormal triad {et, en, eb} and recalling e =√
1− ε2. Here, XP (s, φ) = ξP (s) + εηP (s)er(s, φ) for ηP (s) =

√
1− s2, corresponding to

a prolate ellipsoid. Notably, as the uniform flow VP is independent of the cross-sectional
angle φ, it is necessarily the case that the integral of (3.5) is also independent of φ.

3.3. A regularised theory

Motivated by the exact solution for a prolate ellipsoid given above, we pose a new
velocity-field ansatz based on regularised Stokeslets and potential dipoles, defined as

u(x) =

e∫
−e

[
Sχ(s′)(x, ξ(s′))− 1− e2

2e2
(e2 − s′2)Dχ(s′)(x, ξ(s′))

]
α(s′) ds′ , (3.7)
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where Sχ(s′) and Dχ(s′) are the regularised singularities of Cortez et al. (2005) and Ainley
et al. (2008), respectively, given explicitly by

Sχ(s′)(x,y) =
(|x− y|2 + 2χ(s′))I
(|x− y|2 + χ(s′))3/2

+
Q(x,y)

(|x− y|2 + χ(s′))3/2
, (3.8)

Dχ(s′)(x,y) = − (|x− y|2 − 2χ(s′))I
(|x− y|2 + χ(s′))5/2

+
3Q(x,y)

(|x− y|2 + χ(s′))5/2
. (3.9)

Defining r2(x,y, s′) = |x− y|2 + χ(s′) for convenience, we write these regularised
singularities as

Sχ(s′)(x,y) =
I
r

+
χ(s′)I
r3

+
Q(x,y)

r3
, (3.10)

Dχ(s′)(x,y) = − I
r3

+
3χ(s′)I
r5

+
3Q(x,y)

r5
, (3.11)

where we have suppressed the arguments of r for brevity. The regularisation parameter
χ(s′) is a posteriori defined as

χ(s) = ε2[(1− s2)− η2(s)] , (3.12)

so that the degree of regularisation varies with the cross-sectional radius. It differs
significantly from the regularisation parameters of previous studies (Cortez et al. 2005;
Cortez & Nicholas 2012; Gillies et al. 2009; Ishimoto & Gaffney 2018; Olson et al. 2013)
in that it depends on the arclength parameter s, and further may take negative values,
though for consistency with previous works we retain its description as a regularisation
parameter. Owing to the limits of integration in (3.7), the integral remains regular even
if χ(s) = 0 for some s ∈ [−e, e], whilst cases where χ(s) < 0 are more subtle and will be
implicitly addressed in the subsequent analysis.

Herein fixing s ∈ [−1, 1], enforcing the leading-order boundary condition (2.12) at the
surface of the slender body gives

V (s) =

e∫
−e

[
Sχ(s′)(X(s, φ), ξ(s′))− 1− e2

2e2
(e2 − s′2)Dχ(s′)(X(s, φ), ξ(s′))

]
α(s′) ds′

+O(ε) , (3.13)

required to hold ∀φ ∈ [0, 2π). In the subsequent analysis we will denote this integrand by
f(s, s′, φ), and in particular remark its similarity to that of (3.5). In general, this integral
equation must be solved numerically for the regularised Stokeslet density α(s), notably
with the necessary computation rendered trivial by the regular integrand. However, in
order to show that it may indeed admit a leading-order solution, we will seek to show
that the integral of (3.13) is independent of φ with errors algebraic in ε, a necessary
condition for a leading-order solution for α(s) to be well-defined.

Proposition. The integral of (3.13), written succintly as
∫ e
−e f(s, s′, φ) ds′, is inde-

pendent of cross-sectional angle φ up to errors of O(ε), subject to minimal smoothness
conditions on the centreline and radius functions.

Proof. Following the approach of Johnson (1980); Keller & Rubinow (1976), we seek
a uniformly valid expansion of f(s, s′, φ), retaining only leading-order terms as ε → 0
and yielding overall algebraic accuracy, and will similarly aim to show that its integral
is in fact independent of φ. The near-singular nature of the regularised Stokeslet and
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potential dipole suggest two regimes: an inner region where s′−s = O(ε), where the local
regularisation dominates, and an outer region where s′ − s is ord(1), that is both O(1)
and not o(1), and the cross-sectional radius function is subleading. When later seeking
to match inner and outer expansions we should a priori consider the cases s′ < s and
s′ > s separately. However, symmetries of the integrand render these solutions identical,
hence, in what follows, we do not distinguish between these two cases.

3.3.1. Outer expansion

In the outer region, with s′ − s = ord (1), we expand r(X(s, φ), ξ(s′), s′) to leading
order in ε to give

r(X(s, φ), ξ(s′), s′) = |ξ(s)− ξ(s′)|︸ ︷︷ ︸
rO(s,s′,φ)

+O(ε) , (3.14)

denoting the leading-order outer expansion by rO and recalling that χ is O(ε2). In doing
so we are assuming that the centreline does not come close to self-intersection, so that
rO as written is ord(1). We may now succinctly expand the integrand in the outer region
of the domain of integration, first writing

Q(X(s, φ), ξ(s′)) = [ξ(s)− ξ(s′)]⊗ [ξ(s)− ξ(s′)]︸ ︷︷ ︸
QO(s,s′,φ)

+O(ε) , (3.15)

giving the regularised Stokeslet and potential dipole as

Sχ(s′)(s, s′, φ) =
I
rO

+
QO

r3
O︸ ︷︷ ︸

Sχ(s′)
O

+O(ε) , (3.16)

Dχ(s′)(s, s′, φ) = − I
r3
O

+
3QO

r5
O︸ ︷︷ ︸

Dχ(s′)
O

+O(ε) , (3.17)

respectively, again recalling that χ(s′) = O(ε2) and omitting arguments for brevity.
In particular, the potential dipole is ord (1) and premultiplied by a factor scaling with
1 − e2 = ε2, and thus the potential dipole term is subleading in the outer expansion of

the integrand. Furthermore, we note that QO and rO are independent of φ, hence Sχ(s′)
O

is independent of φ. Thus, the full outer expansion of the integrand, correct to errors of
O(ε) and denoted by fO(s, s′, φ), also does not depend on the cross-sectional angle φ,
with fO being given by

fO(s, s′) =

[
I
rO

+
QO

r3
O

]
α(s′) , (3.18)

where rO and QO each have their arguments of s and s′ omitted for brevity.

3.3.2. Leading-order Prandtl matching term

We will later determine a uniformly-valid composite solution at leading order, and thus
will require the Prandtl matching term, which is given by the limit of the outer expansion
fO(s, s′) as s′ → s. Noting that

rO(s, s′) ∼ |s′ − s| , QO(s, s′) ∼ (s′ − s)2et(s)⊗ et(s) , (3.19)

as s′ → s, this limiting behaviour is readily found to be

fM (s, s′) =

[
I

|s′ − s|
+
et(s)⊗ et(s)
|s′ − s|

]
α(s) . (3.20)
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Here we have assumed that the derivative of α(s′) is O(1) as ε → 0, which may be
validated a posteriori. Inherited from fO, this matching term is also independent of φ.

3.3.3. Inner expansion

In the inner region, with s′−s = O(ε), we introduce the inner variable σ = (s′−s)/ε =
O(1), and expand

r(X(s, φ), ξ(s′), s′) =
[
|ξ(s)− ξ(s′) + εη(s)er(s, φ)|2 + χ(s′)

]1/2
=
[
|−εσet(s) + εη(s)er(s, φ)|2 + χ(s) +O(ε3)

]1/2
= ε

[
σ2 + η2(s) + (1− s2 − η2(s))

]1/2
+O(ε2)

= ε
[
σ2 + 1− s2

]1/2︸ ︷︷ ︸
rI(s,s′,φ)

+O(ε2) , (3.21)

having Taylor expanded ξ(s′) and χ(s′) about s and noting that et(s) · er(s, φ) = 0 by
definition. In expanding we have assumed that the centreline curvature κ is such that
εκ = o(1), in addition to dχ(s′)/ds′ = O(ε2), once more noting that χ(s′) = O(ε2) by
construction. With χ(s′) dependent on the radius function via (3.12), this latter condition
is satisfied by imposing the weak constraint η dη/ds′ = O(1), recalling that η ∈ [0, 1].
Notably, we see from (3.21) that rI(s, s

′, φ) is in fact independent of φ, being purely a
function of s and s′.

As in the outer solution, we expand the outer product Q as

Q(X(s, φ), ξ(s′)) = [ξ(s)− ξ(s′) + εη(s)er(s, φ)]⊗ [ξ(s)− ξ(s′) + εη(s)er(s, φ)]

= ε2 [−σet(s) + η(s)er(s, φ)]⊗ [−σet(s) + η(s)er(s, φ)]︸ ︷︷ ︸
QI(s,s′,φ)

+O(ε3) ,

(3.22)

noting that the only dependence on the variable of integration s′ is through the coeffi-
cients of et(s) in the multiplicands, here written in terms of the inner variable σ. The
regularised Stokeslet and potential dipole are now given as

Sχ(s′)(s, s′, φ) =
I
rI

+
χ(s)I
r3
I

+
QI

r3
I︸ ︷︷ ︸

Sχ(s′)
I

+O(1) , (3.23)

Dχ(s′)(s, s′, φ) = − I
r3
I

+
3χ(s)I
r5
I

+
3QI

r5
I︸ ︷︷ ︸

Dχ(s′)
I

+O(ε−2) , (3.24)

having suppressed the arguments on the right-hand side and again Taylor expanded
χ(s′) about s, recalling that these expansions are asymptotic only for s′− s = O(ε). The
leading-order inner expansion of the integrand may then be written as

f I(s, s
′, φ) =

[
I
rI

+
χ(s)I
r3
I

+
QI

r3
I

− 1− e2

2e2
(e2 − s′2)

(
− I
r3
I

+
3χ(s)I
r5
I

+
3QI

r5
I

)]
α(s) ,

(3.25)
expanding α(s′) ∼ α(s) as in (3.20). With implicit component-wise division in the
notation used here and below, we have f/f I = 1 + O(ε) when s′ − s = O(ε), and
have chosen not to expand the coefficient of the regularised potential dipole for later
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algebraic convenience. Nonetheless, this coefficient is O(ε2), so that all terms in fI are
of the same order in the inner region.

3.3.4. Uniformly valid expansion

As commonly considered in asymptotic analyses (Bender & Orszag 1999), we construct
a uniformly-valid composite expansion

fC(s, s′, φ) = fO(s, s′) + f I(s, s
′, φ)− fM (s, s′) , (3.26)

with f/fC = 1+O(ε) for all s′ ∈ [−e, e]. We now proceed to show that
∫ e
−e fC(s, s′, φ) ds′

is in fact independent of φ, such that the leading-order boundary condition (3.13) may
be satisfied. From (3.26) we see that we need only consider the integral of the inner part
of the composite expansion,

e∫
−e

[
I
rI

+
χ(s)I
r3
I

+
QI

r3
I

− 1− e2

2e2
(e2 − s′2)

(
− I
r3
I

+
3χ(s)I
r5
I

+
3QI

r5
I

)]
α(s) ds′ . (3.27)

However, the inner expansion has dependence on φ only through the outer product QI ,
so we may consider only the reduced integral

e∫
−e

[
QI

r3
I

− 1− e2

2e2
(e2 − s′2)

3QI

r5
I

]
α(s) ds′ =

(e−s)/ε∫
−(e+s)/ε

[
QI

r3
I

− ε2

2e2
(e2 − (s+ εσ)2)

3QI

r5
I

]
α(s)ε dσ , (3.28)

where we have rewritten the integral with respect to the inner variable σ. Careful
consideration of the form of QI given in (3.22) reveals that its only dependence on the
cross-sectional angle φ is through terms which are homogeneous degree zero or degree
one in σ. Omitting factors that are constant with respect to the integration variable, we
write the integrals of these terms explicitly as

Jp =

(e−s)/ε∫
−(e+s)/ε

[
σp

(σ2 + 1− s2)
3/2
− 3

2e2
(e2 − (s+ εσ)2)

σp

(σ2 + 1− s2)
5/2

]
dσ (3.29)

for p ∈ {0, 1}.
Whilst these integrals may be readily computed to give J0 = J1 = 0, we can instead

exploit the link between our theory and that of Chwang & Wu (1975). Again noting the
similarity between our leading-order boundary condition (3.13) and the exact solution
for a prolate ellipsoid given in (3.5), we see that the analysis performed above can be
applied to the prolate ellipsoid. Analogously to the above, conducting such an analysis
on the integral of (3.5) highlights that any φ dependence at leading order can be present
only in the quantity

(e−s)/ε∫
−(e+s)/ε

[
QP

r3
I

− ε2

2e2
(e2 − (s+ εσ)2)

3QP

r5
I

]
αP ε dσ , (3.30)

where

QP (s, s′, φ) = ε2 [−σet(s) + ηP (s)er(s, φ)]⊗ [−σet(s) + ηP (s)er(s, φ)] (3.31)
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and rI is unmodified from (3.21) due to our choice of χ(s) collapsing to zero for the
prolate spheroid. As above, the φ dependence in (3.30) is modulated by the integrals J0

and J1. Omitting detailed calculation, this φ dependence may be written as

J0g(φ) + J1h(φ) , (3.32)

where g and h are linearly-independent functions of φ. With the solution of Chwang &
Wu necessarily independent of φ, we therefore must have that J0 = J1 = 0.

Hence, with Jp not dependent on the radius function η or on the centreline ξ, we retain
J0 = J1 = 0 in the general case. Therefore, the integral of the composite expansion is
independent of φ to O(ε) errors, and we may thus conclude that

∫ e
−e f(s, s′, φ) ds′ is also

independent of φ with O(ε) error terms. QED.

3.4. Analytic solution for straight bodies in constant flow

Whilst in full generality the unknown Stokeslet density in (3.13) must be solved for
numerically, for slender bodies with a constant surface velocity V (s) = V and straight
centreline, so that ξ(s′) = s′et for constant et, a simple analytic solution for the leading-
order density may be obtained.

Motivated by the solution for the prolate ellipsoid, we seek a solution with α(s) = α
constant, independent of arclength. Coupled with the assumption of a straight centreline,
so that in particular rO(s, s′) = |s′ − s| + O(ε) and is thus asymptotic to its limiting
behaviour as s′ → s, given in (3.19), we see that the outer and matching terms of the
composite expansion (3.26) cancel at leading order, leaving only

fC(s, s′, φ) = fI(s, s
′, φ) (3.33)

as the uniformly-valid composite expansion with f/fC = 1 + O(ε) for all s′ ∈ [−e, e].
What remains as the surface velocity is simply

V =

e∫
−e

fI(s, s
′, φ) ds′ +O(ε) , (3.34)

with the integral being of the same form as that in (3.27). Motivated by the cancellation
of regularised Stokeslet and potential dipole contributions that yielded φ independence in
the previous analysis, we consider the terms explicitly involving χ(s) in the numerators
of (3.27). With s being constant with respect to the variable of integration, we may write
these terms as

χ(s)α

e∫
−e

[
1

r3
I

− 1− e2

2e2
(e2 − s′2)

3

r5
I

]
ds′ , (3.35)

with the integrand being equal to that of J0 when written in the inner variable σ. Hence,
as J0 = 0, the terms explicitly involving χ(s) contributions to the numerators vanish in
the integral, leaving the surface velocity ansatz as

V =

e∫
−e

[
I
rI

+
QI

r3
I

− 1− e2

2e2
(e2 − s′2)

(
− I
r3
I

+
3QI

r5
I

)]
α ds′ +O(ε) . (3.36)

A simple direct comparison of the leading-order component of this integral equation
with the formulation of Chwang & Wu (1975) for a prolate ellipsoid, stated here in (3.5),
highlights differences only within the outer product term QI , noting that rI = r for the
ellipsoid. For clarity, denoting terms relating to the prolate ellipsoid analogue as QP and
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E 1.21× 10−8 2.08× 10−2 4.01× 10−2 4.47× 10−2 4.53× 10−2

Figure 2: Maximum error E in the no-slip boundary condition for various slender bodies with a straight
centreline and constant surface velocity, using α(s) = αP . The characteristic shapes of the slender bodies,
corresponding to the functional forms given in appendix A, are presented above, with the shapes shown
stretched vertically for visual clarity. Here with ε = 10−2, we report the maximum error, as measured in
the infinity norm, to a unit surface velocity, denoted E, for each shape, showing errors that are O(ε). This level
of error is retained even when considering bodies with a highly-oscillatory radius function (c) or a cusp (d-e),
with this latter observation suggesting a robustness of this methodology outside of its analytically derived
scope. In panels (b-e), sections of body surface where |V − Vnum|∞ > E/10 are highlighted with red circles,
from which we note that the largest errors are present at the endpoints of the slender body and in regions of
high curvature. No such points are highlighted in panel (a) as the boundary condition is satisfied to working
precision everywhere on the prolate ellipsoid.

ηP (s) as above, we recapitulate

QI(s, s
′, φ) = ε2 [−σet(s) + η(s)er(s, φ)]⊗ [−σet(s) + η(s)er(s, φ)] , (3.37)

QP (s, s′, φ) = ε2 [−σet(s) + ηP (s)er(s, φ)]⊗ [−σet(s) + ηP (s)er(s, φ)] . (3.38)

From these expressions it is clear that the only difference between QI and QP is through
the η(s) and ηP (s) terms, where we recall ηP (s) =

√
1− s2 defines the shape of the

prolate ellipsoid. However, employing the same approach as used above to establish φ
independence of (3.28), recalling that J0 = J1 = 0, all terms involving η(s) and ηP (s) in
the numerators vanish upon integration, so that in fact there is no dependence of (3.36)
on the shape η(s).

Thus, having seen that all differing terms in the integrand provide no contribution to
the integral at leading order, the relation between α and V is precisely that between αP
and VP for the prolate ellipsoid, up to algebraic errors scaling with ε or less. Hence, for
slender bodies with straight centrelines and a uniform surface velocity, taking VP = V
we conclude that

α(s) = αP +O(ε) . (3.39)

4. Numerical verification

Firstly considering slender bodies with straight centrelines and a uniform surface
velocity V , we begin by verifying that the boundary condition (3.13) is indeed satisfied
with algebraic errors by α(s) = αP , independent of cross-sectional angle φ.

Taking V = [1, 1, 1]T and rescaling so that |V | = 1 throughout, in figure 2 we report
E = maxs,φ |V − Vnum(s, φ)|∞ for a variety of slender bodies, where | · |∞ denotes the
infinity norm. Here, Vnum(s, φ) is the numerical value of the integral given in (3.13),
and the maximum is approximated by computing |V − Vnum(s, φ)|∞ at 104 sample
points on the surface of the slender body. Integrals to evaluate surface velocities are
computed numerically using the MATLAB R© command quadv to a tolerance of 10−6,
significantly less than the chosen ε, which here is ε = 10−2 though what follows holds in
more generality. Figure 2 demonstrates the validity of our proposed slender-body theory,
with maximal errors being O(ε) for a range of radius functions, and, reassuringly, less
than numerical tolerance for the case of a prolate ellipsoid (see figure 2a). Remarkably,
such low error is retained even when considering an example slender body with a cusp, as
highlighted by figure 2d-e, suggesting a robustness of this regularised slender-body theory
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(a) (b) (c)

Figure 3: Error in the no-slip boundary condition as a function of slenderness ε, and a comparison of flow fields
with the boundary element method. (a) Maximum error E as a function of ε for the straight slender bodies
shown in figure 2, excluding the prolate ellipsoid of figure 2a as it exhibits machine-precision errors independent
of ε. We see evidenced an approximate linear dependence of error on epsilon, with individual datapoints shown
as a black dots. (b,c) Pointwise infinity-norm difference in flow fields computed via the proposed slender-body
theory and the boundary element method, denoted |u− uB |∞ for boundary element flow field uB . Having

taken ε = 10−2, we see in (b) a good agreement between the methodologies, serving as validation of the
presented slender-body theory. Larger disparity in (c) is resultant of poor accuracy of the boundary element
computation, limited by the overwhelming computational resources needed to accurately capture highly-slender
geometries. Taking straight centrelines, body shapes are as in figure 2b and figure 5, and vertical axes have
been rescaled for visual clarity.

to cases outside its analytical scope, though the largest errors in the boundary velocity
occur at the cusps of these examples. We additionally validate the asymptotic scaling
of the error in the boundary condition by repeating the above error calculations for a
range of values of ε, with the resulting ε-dependent errors in the surface velocity shown
in figure 3(a), verifying an approximate linear dependence on ε. The precise functional
forms of η(s) corresponding to the shapes shown in figure 2 are given in appendix A, and
the presented results are qualitatively unchanged when altering the prescribed uniform
background velocity V , with absolute errors scaling linearly with the magnitude of V .

Further, we validate the flow fields as given by the proposed slender-body theory via
direct comparison to those computed using the boundary element method summarised
by Pozrikidis (2002), as implemented by Walker et al. (2019). In these boundary element
computations we represent the surface of the slender body by a discrete mesh containing
8× 104 flat triangles, linearly interpolating unknowns across mesh elements. Taking ε =
10−2, figure 3(b) reports the pointwise infinity norm of the difference between the slender-
body theory flow field u and that computed via the boundary element method around
a sample slender body, with the latter flow being denoted uB . We observe agreement
between the methodologies at approximately O(ε), serving as strong numerical validation
of the analytically justified slender-body theory presented above. A further flow field
comparison is presented in figure 3(c), though in the case of this particular slender body
there is significant pointwise disparity between the flow fields computed by the two
methodologies. However, with the significant differences localised around the most narrow
region of the slender body, we find that the dominant contribution to the apparent
error is in fact limitations of the boundary element computation. Indeed, owing to the
very high surface curvatures of the slender body, the computational meshes needed to
accurately capture the effects of the geometry on the flow around this particularly-narrow
segment of the slender body are more highly resolved than is computationally feasible
in practice using this boundary element implementation, with further refinement of the
result prohibited by the overwhelming computational resources required. This highlights
a general weakness of gold-standard boundary element computations when applied to
slender bodies, with refined meshes required in order to attain reasonable accuracy in
the near-field of the most-slender regions. Representing a significant advantage of slender
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E 4.59× 10−2 7.35× 10−2 5.52× 10−2 1.50× 10−1 5.27× 10−1

Figure 4: Maximum error E in the no-slip boundary condition for various slender bodies with non-straight
centrelines and constant surface velocity, having solved for α(s) numerically. The centrelines of the slender
bodies, corresponding to the functional forms given in appendix B, are presented above, each having the radius
function corresponding to figure 2b. Here with ε = 10−2, for each shape we report the maximum error, as
measured in the infinity norm, to a unit surface velocity, denoted E, showing errors that are O(ε) in all cases
except (d) and (e), which each violate assumptions on centreline curvature, suggesting that such assumptions
are necessary for validity of our slender-body theory in practice. These plots have aspect ratio 1:1 and are
independently scaled for visual clarity.

theories over other computational methods, this limitation is not shared by slender-body
theories such as that presented in this work, with accuracy not reliant on high-resolution
computational meshes and body geometry analytically captured in the flow-field ansatz.

Considering slender bodies more generally, we now prescribe non-straight centrelines as
well as non-trivial radius functions, which, in contrast to bodies with straight centrelines,
necessitate numerical solution of the integral equation (3.13) for the unknown α(s). We
discretise the unknown density α(s) crudely into 100 piecewise-constant elements, result-
ing in a linear system of low dimension that may be readily inverted, with invertibility
established numerically for each considered slender body, including those violating the
assumptions of the asymptotic theory. We take φ = 0, though remark that the following
results are qualitatively independent of both this choice and the number of elements used
in the discretisation. Evaluating the error E in the boundary condition as defined above,
here approximated at 103 points along the body, we present in figure 4 the error for a
number of sample centrelines, fixing the radius function to be that of figure 5 but with
observations holding in more generality. We again see limited errors in the fluid velocity
on the surface of the body in all examples satisfying the assumptions of our analysis,
recovering component-wise differences that are O(ε) and validating our simple slender
theory. However, candidate centrelines breaking the assumptions of body curvature do not
give rise to such small errors, instead giving ord (1) variations in the boundary condition
as shown in figure 4d and figure 4e, demonstrating that curvature assumptions may not be
relaxed. Whilst the examples shown here use plane curves as sample centrelines for visual
clarity, the above remarks additionally hold for non-planar centrelines, as well as for a
range of values of ε. For the cases considered, we additionally note a slight increase in the
computational requirements of the adaptive quadrature applied to non-straight bodies
in comparison to straight slender bodies, though we retain the efficiency associated with
slender-body theories.

5. Discussion

In this work we have presented, justified, and numerically verified a leading-order
theory of non-uniform slender bodies in Stokes flow, accurate to errors algebraic in the
slenderness parameter. Motivated by the methodology of Johnson (1980) and the classical
solutions of Chwang & Wu (1975), we have significantly expanded the range of permissible
radius functions considered by Johnson (1980), enabling the future modelling of a variety
of biologically and physically motivated slender bodies in flow, for example wave-like syn-
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thetic structures or the tapered flagella of mammalian spermatozoa. Afforded additional
flexibility by this study and the complimentary work of Borker & Koch (2019), slender-
body theory may also play a wider role in shape optimisation studies (Keaveny & Shelley
2011), being computationally-efficient in comparison to other standard methodologies, in
particular those reliant on refined computational representations of body geometry such
as the boundary element method (Pozrikidis 2002).

Previously, practical applications of many slender-body theories have been plagued
with numerical complexity, requiring specialised quadratures or other approaches to
overcome singularities in the integral kernels (Shelley & Ueda 2000; Tornberg & Shelley
2004). Similarly to the regularised slender-body theory of Cortez & Nicholas (2012), our
presented theory overcomes such issues by utilising the regularised singularities of Cortez
(2001), and additionally requires the evaluation of fluid velocities only on the surface
of the slender body rather than on its centreline, enabling direct numerical evaluation
of the integral kernel of (3.7). This regularised slender theory therefore gives rise to a
computationally-simple methodology that may be readily implemented in non-specialised
frameworks to yield stable numerical solutions. Representing a simplification over more-
complex mesh-based methodologies, body shape is encoded directly and explicitly in
the regularisation parameter. This is of particular pertinence to bodies with straight
centrelines, with this work having found that the leading-order solution for the regu-
larised Stokeslet density in this case is given simply by that for a corresponding prolate
ellipsoid. Hence, explorations of straight slender bodies with various cross-sectional radius
functions do not necessitate repeated solution for the density α(s), with only minor
modifications to the integral kernel required in order to obtain the flow field via (3.7).

Moreover, having defined our choice of regularisation parameter in terms of the body
shape, in the context of the flow-field ansatz the analysis in this work provides a
rigorous relation between geometry and regularisation. Such a link has previously been
lacking in studies making use of regularised singularities, with ad hoc links between the
regularisation parameter and body radius typically being argued, with the former often
taken to be spatially-independent. Indeed, in the context of the flow-field ansatz posed
in this study, such a choice of regularisation parameter does not correspond to a filament
with constant radius, instead being characteristic of spheroidal slender bodies only.
Thus, providing an explicit relationship between regularisation and geometry, this study
represents a step towards understanding the effects of spatially varying regularisation
parameters on the flow solutions obtained using regularised singularities.

Numerical explorations and validations of our approach suggested that, at least in the
cases considered, some assumed smoothness properties of the cross-sectional radius func-
tion may be relaxed yet still give rise to a leading-order theory, though this phenomenon
did not carry through to centrelines with high curvature or indeed cusps, which led
to ord (1) errors in the boundary condition. This robustness to example cross-sectional
radius functions that fall outside the proven scope of this methodology suggest potential
applications to an even wider class of body geometries, though significant numerical
and asymptotic analysis is required to establish such accuracy with confidence. Further
analysis is also required to address questions of uniqueness inherent to regularised theories
more generally, with validity of our regularised slender-body theory evidenced here by
direct comparison to a gold-standard boundary element methodology (Pozrikidis 2002;
Walker et al. 2019).

In summary, we have presented a simple regularised slender-body theory with algebraic
accuracy, applicable to a wide range of slender filament geometries with circular cross
sections, which significantly expands upon existing methodologies. Further, the presented
theory overcomes numerical instabilities associated with many previous slender-body
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theories, making use of singularities with spatially dependent regularisation whilst re-
taining algebraic errors in the body slenderness ratio. The accuracy, simplicity, and
flexibility provided by this approach has the potential to facilitate extensive investigations
of low Reynolds number motion, including numerous physical and biological applications.
Finally, in a special but physically-relevant case we have derived a leading-order solution
to the corresponding flow problem, linking the flow about straight slender bodies to an
elegant classical solution.
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Appendix A. Radius functions of figure 2

The radius functions used in figure 2 have functional forms given by

(a)
√

1− s2

(b)
√

1− s2(1− 0.1 cos 2πs)

(c)
√

1− s2(1.1 + sin 9πs)

(d) (1− |s|1/4)(1 + [s+ 0.1]2)
(e) (1− s)(s+ 1)(s3 + 1)(s2 + 0.2)

where labels correspond to those in figure 2 and these functional forms are equal to η(s)
subject to normalisation, recalling η(s) ∈ [0, 1].

Appendix B. Centrelines and radius function of figure 4

The plane curves used as centrelines in figure 4, subject to normalisation, are param-
eterised in Cartesian xy-coordinates as

(a) (x(t), y(t)) = (t, t2) , t ∈ [−1, 1]
(b) (x(t), y(t)) = (sin t, sin t cos t) , t ∈ [π/2, 3π/2]
(c) (x(t), y(t)) = (t1/4 sin t, t1/4 cos t) , t ∈ [0.1, 2π]
(d) (x(t), y(t)) = (t, tanh 100t) , t ∈ [−1/2, 1/2]
(e) (x(t), y(t)) = (16 sin3 t, 13 cos t− 5 cos 2t− 2 cos 3t− cos 4t) , t ∈ [π/2, 3π/2]

where labels correspond to those in figure 4 and the third Cartesian components are
identically zero. The radius function used is given by

√
1− s2(1.1 + sinπs), subject to

normalisation, as exemplified in figure 5.

REFERENCES

Ainley, Josephine, Durkin, Sandra, Embid, Rafael, Boindala, Priya & Cortez,
Ricardo 2008 The method of images for regularized Stokeslets. Journal of Computational
Physics 227 (9), 4600–4616.

Antman, S. S. 2005 Nonlinear Problems of Elasticity , Applied Mathematical Sciences, vol. 107.
New York: Springer-Verlag.

Bender, Carl M. & Orszag, Steven A. 1999 Advanced Mathematical Methods for Scientists
and Engineers I . New York, NY: Springer New York.

http://dx.doi.org/10.5287/bodleian:xqzd9M45j
http://dx.doi.org/10.5287/bodleian:xqzd9M45j


A regularised slender-body theory of non-uniform filaments 17

Figure 5: The characteristic shape generated by the radius function used in the evaluation of the presented
slender-body theory on non-straight body, with centrelines shown in figure 4, with the radius here shown
stretched vertically and relative to a straight centreline for visual clarity. The body radius is proportional to√

1− s2(1.1 + sinπs), where s ∈ [−1, 1].

Borker, Neeraj S. & Koch, Donald L. 2019 Slender body theory for particles with non-
circular cross-sections with application to particle dynamics in shear flows. Journal of
Fluid Mechanics 877, 1098–1133.

Chwang, Allen T. & Wu, T. Yao-Tsu 1975 Hydromechanics of low-Reynolds-number flow.
Part 2. Singularity method for Stokes flows. Journal of Fluid Mechanics 67 (04), 787.

Cortez, Ricardo 2001 The Method of Regularized Stokeslets. SIAM Journal on Scientific
Computing 23 (4), 1204–1225.

Cortez, Ricardo, Fauci, Lisa & Medovikov, Alexei 2005 The method of regularized
Stokeslets in three dimensions: Analysis, validation, and application to helical swimming.
Physics of Fluids 17 (3), 031504.

Cortez, Ricardo & Nicholas, Michael 2012 Slender body theory for Stokes flows with
regularized forces. Communications in Applied Mathematics and Computational Science
7 (1), 33–62.

Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid Part 1. General theory.
Journal of Fluid Mechanics 44 (04), 791.

Cummins, J M & Woodall, P F 1985 On mammalian sperm dimensions. Journal of
Reproduction and Fertility 75 (1), 153–175.

Fawcett, D W 1970 A comparative view of sperm ultrastructure. Biology of reproduction.
Supplement 2, 90–127.

Gillies, Eric A., Cannon, Richard M., Green, Richard B. & Pacey, Allan A. 2009
Hydrodynamic propulsion of human sperm. Journal of Fluid Mechanics 625, 445.

Gray, J. & Hancock, G. J. 1955 The Propulsion of Sea-Urchin Spermatozoa. Journal of
Experimental Biology 32 (4), 802–814.

Guglielmini, Laura, Kushwaha, Amit, Shaqfeh, Eric S. G. & Stone, Howard A. 2012
Buckling transitions of an elastic filament in a viscous stagnation point flow. Physics of
Fluids 24 (12), 123601.

Hancock, G. J. 1953 The self-propulsion of microscopic organisms through liquids. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences 217 (1128),
96–121.

Ishimoto, Kenta & Gaffney, Eamonn A. 2018 An elastohydrodynamical simulation study of
filament and spermatozoan swimming driven by internal couples. IMA Journal of Applied
Mathematics 83 (4), 655–679.

Johnson, Robert E. 1980 An improved slender-body theory for Stokes flow. Journal of Fluid
Mechanics 99 (02), 411.

Keaveny, Eric E & Shelley, Michael J 2011 Applying a second-kind boundary integral
equation for surface tractions in Stokes flow. Journal of Computational Physics 230 (5),
2141–2159.

Keller, Joseph B & Rubinow, Sol I 1976 Slender-body theory for slow viscous flow. Journal
of Fluid Mechanics 75 (04), 705.

Koens, Lyndon & Lauga, Eric 2016 Slender-ribbon theory. Physics of Fluids 28 (1), 013101.
Lighthill, James 1976 Flagellar hydrodynamics. SIAM review 18 (2), 161–230.
Olson, Sarah D., Lim, Sookkyung & Cortez, Ricardo 2013 Modeling the dynamics of

an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation.
Journal of Computational Physics 238, 169–187.

Pozrikidis, C 2002 A Practical Guide to Boundary Element Methods with the Software Library
BEMLIB . CRC Press.



18 B. J. Walker, M. P. Curtis, K. Ishimoto, and E. A. Gaffney

Roper, Marcus, Dreyfus, Rémi, Baudry, Jean, Fermigier, M., Bibette, J. & Stone,
H. A. 2006 On the dynamics of magnetically driven elastic filaments. Journal of Fluid
Mechanics 554, 167.

Shelley, Michael J. & Ueda, Tetsuji 2000 The Stokesian hydrodynamics of flexing,
stretching filaments. Physica D: Nonlinear Phenomena 146 (1-4), 221–245.

Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C. 2009 Human sperm
accumulation near surfaces: a simulation study. Journal of Fluid Mechanics 621, 289.

Tornberg, Anna Karin & Shelley, Michael J. 2004 Simulating the dynamics and
interactions of flexible fibers in Stokes flows. Journal of Computational Physics 196 (1),
8–40.

Walker, Benjamin J., Wheeler, Richard J., Ishimoto, Kenta & Gaffney, Eamonn A.
2019 Boundary behaviours of Leishmania mexicana: A hydrodynamic simulation study.
Journal of Theoretical Biology 462, 311–320.

Zhao, Boan, Lauga, Eric & Koens, Lyndon 2019 Method of regularized stokeslets: Flow
analysis and improvement of convergence. Physical Review Fluids 4 (8), 084104.


	Introduction
	The slender-body problem
	Describing the slender body
	Nondimensionalisation
	Leading-order problem

	A regularised theory
	Johnson's approach
	The prolate ellipsoid in uniform flow
	A regularised theory
	Analytic solution for straight bodies in constant flow

	Numerical verification
	Discussion
	Appendix A
	Appendix B

