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Vascular networks play a key role in the development, function, and survival of

many organisms, facilitating transport of nutrients and other critical factors

within and between systems. The development of these vessel networks has

been explored in a variety of in vivo, in vitro, and in silico contexts. However, the

role of interactions between the growing vasculature and its environment

remains largely unresolved, particularly concerning mechanical effects.

Motivated by this gap in understanding, we develop a computational

framework that is tailored to exploring the role of the mechanical

environment on the formation of vascular networks. Here, we describe,

document, implement, and explore an agent-based modelling framework,

resolving the growth of individual vessels and seeking to capture

phenomenology and intuitive, qualitative mechanisms. In our explorations,

we demonstrate that such a model can successfully reproduce familiar

network structures, whilst highlighting the roles that mechanical influences

could play in vascular development. For instance, we illustrate how an external

substrate could act as an effective shared memory for the periodic regrowth of

vasculature. We also observe the emergence of a nuanced collective behaviour

and clustered vessel growth, which results from mechanical characteristics of

the external environment.
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1 Introduction

The blood vasculature system consists of a network of interconnected tissues that are

required to transport nutrients to all parts of an organism, in addition to moving waste

products to other organs for absorption or excretion. The vasculature system develops

through directed differentiation of precursor cells during embryogenesis (Tomanek,

1996), a process also referred to as angiogenesis, and is a key developmental process

in organisms ranging from invertebrates such as Botryllus schlosseri (Rodriguez et al.,

2019) to humans (Tomanek, 1996). In addition to the general vasculature system

distributed throughout an organism, specialised vasculature is required for the proper
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functioning of many organs including the retina (Selvam et al.,

2018), the pancreas (Henry et al., 2019), and the lining of the

uterus (Salamonsen et al., 2021) in humans. The vasculature

system is highly dynamic, undergoing remodelling as a result of

ageing (Donato et al., 2018), wound healing (Järvinen and

Ruoslahti, 2007), as well as monthly uterine vascular

extension and retraction associated with the menstrual cycle

(Salamonsen et al., 2021). As with many developmental

processes, misregulation of angiogenesis and vasculature

remodelling is also associated with disease processes, from

impaired wound healing in diabetic patients (Okonkwo et al.,

2020) to increased nutrient supply to cancerous tumours (Forster

et al., 2017; Lugano et al., 2020). In both healthy and pathological

contexts, angiogenesis and vasculature remodelling occur in a

complex environment, requiring the developing vasculature to

interact with and potentially modify its external environment.

Despite the importance of angiogenesis and vasculature

remodelling in development and disease processes, very little

is known about the nature of the interaction of the developing

vasculature with its surrounding environment, including how

feedback between the vasculature and its mechanical

environment dictates network connectivity and structure

during regrowth and remodelling.

A number of theoretical models utilising an array of analytic

and simulation frameworks have been proposed to investigate

vasculature development. Continuum models of vasculature

development typically consist of coupled systems of

differential equations, tracking the behaviour of cells at the

population level. Such models have provided insights into

vasculature development under wild-type conditions in the

retina (Maggelakis and Savakis, 1996; Aubert et al., 2011) and

during wound healing (Flegg et al., 2012), revealing the

importance of nutrient availability (including growth factors

and oxygen) in vasculature development. By design,

continuum models focus on large scale behaviours and

structures involving many thousands, and often millions, of

cells, and emergent model behaviours are amenable to

analysis using many of the tools from differential equations

and dynamical systems theory. However, continuum models

rely on averaging the behaviour of collections of cells, making

it difficult to understand the role of individual cells or features,

and they are not effective at capturing rare or small scale events.

A popular alternative to continuum models are individual or

agent based models (ABMs), which specify rules for interacting

agents, usually cells, and their emergent behaviours in the

formation, maintenance, and remodelling of the vasculature.

ABM models have been used to investigate general

vasculature development in physiological conditions (Bentley

et al., 2008) and in vitro (Artel et al., 2011) and have

complimented continuum approaches for studying

development in the retina (McDougall et al., 2012). ABMs are

particularly effective at elucidating the interactions that give rise

to small-scale or initial vascularisation, where there may be few

cells. For instance, fine network structure, rare events, and

initiation of vasculature development are best captured by

ABMs. However, the rules required for this modelling

approach are often complex, with intricate interconnected

systems, making it challenging to identify causal factors of

emergent behaviours. Hence, with the fundamental drivers of

network formation having not yet been fully elucidated, a key aim

of this study will be to develop a minimal and justified ABM for

vascular remodelling, incorporating effects at the

phenomenological level and seeking simplicity and efficiency

over quantitative faithfulness and surplus complexity.

An example application of both agent based and continuum

modelling approaches is the study of vasculature development

and angiogenesis in the context of cancer. Since cancerous

tumours require nutrients to support their growth, tumours

have co-opted the normal physiological process to promote

new vasculature formation and divert oxygen and other

nutrients to the growing tumour. Given the large number of

cells in tumours, continuum approaches have been successfully

applied in this context, yielding improved understanding of the

role of tissue structure in glioblastoma invasion (Conte et al.,

2021) and tumour responses to various therapeutic interventions

(Hormuth et al., 2021). ABMs have also yielded insights into

vasculature remodelling in response to growing tumours

(Alarcón et al., 2003). Research in this context has also

motivated the development and use of hybrid schemes, which

seek to exploit the best features of both continuum and agent-

based modelling frameworks. Recently, these models have

yielded insights into the responses of tumours to

FIGURE 1
A typical colony of Botryllus schlosseri. The flower-shaped
system at the centre of the organism is made up of a collection of
individual zooids, with their orientation resulting in an approximate
radial symmetry. The collagen-rich tunic can be seen as a
grey shadow surrounding the system, and the vasculature
connecting all individuals in the system can be seen as a network
of vessels throughout the tunic. Image credit: Younghoon Kwon,
personal communication.
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interventions, for instance, informing clinical practices such as

the dosage and timing of radiation and chemotherapy (Powathil

et al., 2015; Scott et al., 2016; Perfahl et al., 2017; Chamseddine

and Rejniak, 2020; Fernández-Romero et al., 2022), which

highlight the significant and developing utility of hybrid

modelling approaches in the study of vasculature.

To date, the majority of models of vascular development in

both wild-type and cancer contexts are driven by a chemotactic

response, with vessels moving in response to gradients of growth

factors (Scianna et al., 2013). There are, however, settings in

which chemical effects are thought to play a secondary role in

guiding network development. For example, the tunicate and

model organism Botryllus schlosseri, shown in Figure 1 (Image

credit: Younghoon Kwon, personal communication) and

summarised in the extensive review of Rodriguez et al.

(Rodriguez et al., 2019), has a network of extracorporeal

vessels that is exposed to the surrounding environment, which

limits the potential efficacy of external diffusive species as

controllers of vascular development, though in-vessel factors

may still promote growth (Tiozzo et al., 2008). In particular,

regrowth of vasculature in response to excision, where the

underlying substrate is completely absent, relies on chemical

signals such as VEGF (Tiozzo et al., 2008). With the effects of

chemical signals potentially less significant in a wild type

developmental context in the presence of an intact substrate,

we are motivated to consider other factors in vascular network

formation. As noted in Rodriguez et al.’s review, B. schlosseri also

serves to motivate consideration of a particular class of effects,

specifically the mechanical influence of a substrate, with the

vessel system of B. schlosseri developing within a thin tunic

(Tiozzo et al., 2008). Whilst previous studies have considered

mechanical influences in other systems (Murray et al., 1983;

Manoussaki et al., 1996; Tosin et al., 2006; Dyson et al., 2016;

Perfahl et al., 2017), the precise nature of any interactions

between this tunic bed and the growing vessels is unknown.

However, it is reasonable to suppose that the extracellular

medium both modifies and is modified by the movement of

the vasculature, at both local and non-local scales, particularly

given the range of factors known to contribute to extracellular

remodelling during vascular growth in other contexts (Lu et al.,

2011). Motivated by this potential prominence of distributed

mechanical effects, the exploration of the behaviours that emerge

from such a coupling forms the primary aim of this study.

Specifically, we will seek to highlight how mechanically driven

growth can give rise to dynamics that are qualitatively distinct

from those typically associated with chemically regulated

development. Throughout, we will focus on phenomenological

exploration, aiming to develop intuition via a flexible qualitative

model rather than establishing quantitative accuracy in any

particular setting, an approach that is commensurate with

both the sought clarity of our agent-based framework and the

absence of detailed knowledge regarding the properties of the

collagenic tunic of B. schlosseri.

As well as being exposed to the elements, the vasculature of B.

schlosseri exhibits a remarkable property, in that it periodically

retracts and regrows its vessel network (Madhu et al., 2020).

Whilst this behaviour can be externally stimulated (Rodriguez

et al., 2019), it also occurs as part of the life cycle of the organism

and serves as an example of its remarkable regenerative

capability, with B. schlosseri capable of replacing excised

vasculature within days (Gasparini et al., 2015). In addition,

the ease with which the exposed vasculature and thin tunic can be

imaged make B. schlosseri a valuable model organism for the

investigation of tissue regeneration. This repeated outgrowth of

vessels through a persistent tunic also presents a platform for a

broader question: to what extent can an extracellular medium,

unmodified during vessel retraction, influence the formation of

successive generations of vasculature? Such a property is not one

that has been extensively explored in the context of chemotaxis-

driven systems, though is reminiscent of hypotheses of wound

healing and the accompanying angiogenesis (Flegg et al., 2020;

Nardini et al., 2021). With the tunic of B. schlosseri potentially

facilitating such a persisting memory of the vessel network, we

consider this question of long-term influence and remodelling in

the context of our agent-based framework, revealing principles

that underlie dynamics of guided and temporally convergent

vascular growth in response to mechanical cues.

Hence, in this study, we will develop a computational agent-

based modelling framework that is tailored to exploring

mechanically dominated vasculature development.

Documenting and motivating our design choices in detail,

with simplicity and interpretability in mind, we seek to

capture phenomenology through a rich yet minimal ansatz for

mechanical effects. Through a range of explorations, which

evidence the ability of our model to reproduce familiar

network structures, we highlight the potential for mechanical

effects to give rise to diverse behaviours that are not typical of

chemotactic systems. In particular, we observe that a persisting

extracellular medium is capable of acting as a shared effective

memory for periodically regrowing model vasculature, eliciting

guided and evolving taxis without the presence of chemical

signalling. Further, we see the emergence of a nuanced

collective behaviour, with the clustered development of

vasculature arising through a combination of redirection and

remodelling, facilitated by mechanically mediated non-local

interactions between developing vessels.

2 A hybrid on/off-lattice model

To model the growth and development of a small-scale

vascular network, as found in B. schlosseri, we will use an

agent-based model, representing the apical tips of the growing

vasculature as individual agents that evolve due to a specified set

of rules, which may be coupled to their environment. These

agents will lay a trail of tissue as they move, representing the
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constructed vessels and illustrated in Figure 2A, a common

approach in discrete models of vasculature development

(Stokes and Lauffenburger, 1991; Anderson and Chaplain,

1998; Scianna et al., 2013). The behaviour of any given agent-

based model depends significantly on the rule-set employed and

the details of the implementation; below we motivate and

describe the design choices made and the consequences that

these decisions have on the emergent dynamics of the overall

model. In doing so, we seek to overcome the often overwhelming

complexity of agent-based models through clear and minimal

design, providing a framework for hypothesis exploration that

minimises the potential for artefactual dynamics specific to the

modelling framework. To achieve this, we will largely abstract

away from the details of any given physical or biological system,

seeking to capture general behaviours rather than produce

quantitatively faithful measures of vascular development.

Motivated in part by the morphology of Botryllus schlosseri,

we will assume that our agent-based model evolves within a

planar annular domain, although with highly generic choices of

interaction functions and no a priori constraints on vasculature

evolution. This geometry can be simply generalised to

accommodate vasculature development in three dimensions.

Throughout, time will be treated as discrete, with the

equations of motion for individual agents interpreted as finite

difference approximations to continuous motility. We will leave

the link between discrete and continuous-time models in this

framework for future studies.

2.1 Motion and collision

Motion in agent-based models is commonly split into one of

two cases: on-lattice movement, where agents are confined to

move on a preset grid, and off-lattice movement, where agents

move unrestricted. Both approaches are associated with

advantages and drawbacks, with off-lattice models requiring a

potentially sophisticated scheme for the detection of collision

between agents, whilst on-lattice models can easily suffer from

rasterisation artefacts of the employed grid. Since both

movement and collision are significant features of vascular

development, and some implementation of collision is

required for the formation of loops in vascular networks when

cast as agent-based models, we seek to overcome the limitations

of each of these schemes whilst benefiting from their distinct

advantages.

Taking advantage of both on- and off-lattice approaches, we

will use a hybrid scheme to identify collision events, with an off-

lattice component handling agent motion whilst an on-lattice

scheme enables efficient calculation of collision events that occur

between agents and any aspect of the constructed vasculature. In

FIGURE 2
The agent-based model, the collision grid, and collision detection. (A) Illustrative evolution of vasculature from the inner edge of an annular
domain, with the agents leaving behind a vessel trail as they move. Their motion in the domain is unrestricted, with instantaneous headings shown as
outlined arrows. Agents are shown as black discs whilst trails are depicted as grey curves. (B) The rounding of off-lattice motion to the collision grid,
with a smooth trajectory being rounded to a discrete path on the grid, the latter as illustrated by grey discs connected by dotted lines. Of note,
this discrete path is used only for the detection of collisions, stored alongside the unrestricted path. (C) The detection of a collision via the collision
grid, with the occupancy of vertices being queried when an agent attempts to move. In this example, the lower agent attempts to move close to a
vertex previously occupied by the upper agent. This collision is resolved by connecting the separate vessel networks and removing the colliding
agent from further simulation. Vertices of the collision grid are numbered by agents as theymove, so that the grid records both the current position of
the agents and the vessel trails laid during previous growth.
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brief, agents (growing tips of the vasculature) move freely in the

domain and are not restricted to movement on a grid. These tip

positions are then separately rounded to a ‘collision grid’ to

facilitate straightforward determination of collision events.

In detail, with agents labelled via an indexing set I = {1, 2, . . . ,

N(t)} at time t, the position of agent i ∈ I is denoted by

coordinates (xi, yi) and is updated simply via the free-

movement evolution equation

xi t + δt( )
yi t + δt( )[ ] � xi t( )

yi t( )[ ] + cos θi t( )
sin θi t( )[ ]Vδt, (1)

where θi is the orientation of the agent relative to the fixed x-

coordinate axis, t is the current time, V is the agent speed,

assumed to be constant, and δt is a fixed timestep. In turn,

the orientation is updated from one time to the next following

θi t + δt( ) � θi t( ) + km + σ2ξ. (2)

The term m encodes the influence of mechanical effects on the

direction of the agent, which we will later describe in detail in

Section 3. This factor is modulated by a weight k ∈ [0, 1], which

limits the magnitude of the contribution of mechanical effects to

the updated agent orientation. The final term, σ2ξ, represents the

contribution of a random noise term with zero mean and

variance σ2, which we take to follow a normal distribution,

requiring that σ2 scales with δt. Though the form of this

update rule is not significant, we note that it affords a notion

of directional persistence to the agents, with θi unchanging in the

absence of rotational noise or mechanical effects. Whilst this

appears to be an intuitive supposition for the motion of the tips of

vascular networks, relaxing this assumption is simple to

accommodate in the modelling framework via the removal of

the θi(t) term and a suitable adjustment to the additive directional

noise. We defer this model modification to future investigations.

With agent motion inherently unconstrained with this

formulation, we define a mechanism to identify collisions

between agents and obstacles, which can include both other

components of the vasculature and any boundaries of the

computational domain. Inspired by the natural convenience of

on-lattice models for collision detection, we construct a relatively

coarse Cartesian grid, onto which we round the agent positions,

and denote these rounded values by ~xi and ~yi. Of particular note,

these rounded positions do not replace the unrounded

coordinates used to track the position of the agents in Eq. 1,

so that we do not inherit the limitations of purely on-lattice

movement. As discussed further below, the spatial scale and

geometry of the coarse grid can be chosen in a number of ways,

potentially corresponding to natural scales in the biological

system under investigation. With the rounded coordinates

(~xi, ~yi) now belonging to a discrete set of positions, as

illustrated in Figure 2B, detecting a collision is as simple as

checking if the grid location (~xi, ~yi) is occupied, either by another
agent, the vessel trail left previously by an agent, or a boundary.

The discrete nature of this now-simplified collision problem

lends itself to simple implementation, with only the previously

rounded coordinates needing to be stored in order to enable

rapid collision checking. The straight-line path travelled by the

agent in the timestep is first queried on the collision grid, with

any collisions identified and the appropriate tiles’ occupancy

updated. To enable agent-agent and agent-trail collision

detection in a manner that identifies the agents or vessel trails

involved, in practice we store the grid as an integer array, with

agents marking their rounded paths via their index i ∈ I. An

example collision event between an agent and a vessel trail is

illustrated in Figure 2C, highlighting the simplicity of our chosen

scheme for collision detection. Of note, at each time step we

randomise the order in which agents move and collisions are

calculated in order to prevent agent-specific bias in the simulated

network formation.

By combining free movement and rounding to a discrete

collision grid, we circumvent the limitations of both on-lattice

and off-lattice schemes, involving only the cost of rounding

operations, storage of the lightweight collision grid, and

rasterised collision detection. Notably, there remains

substantial freedom in the specifics of the collision grid, with

regular Cartesian grids being the easiest to implement whilst

more complex grids, such as hexagonal grids, afford further

freedom in grid shape. In the present study, we adopt a

simple Cartesian grid, acknowledging that the details of the

collision grid influence only the details of collision detection,

rather than agent motion more generally. Further, there is no

unique choice for the resolution of the collision grid, with refined

grids giving rise to more-precise collision detection than coarse

alternatives, though at increased computational costs. However,

when the geometry of an agent can be approximated by a single

grid tile, a natural interpretation is to conflate the agent size with

the tile size. We will adopt this viewpoint in the remainder of this

study, though the generalisation of this to complex agent

morphologies is straightforward, with a refined grid capable of

capturing the shape of an agent and, thus, collisions to any

desired precision. In the broad context of existing agent-based

models, this latter extension can be viewed as being in the spirit of

the multi-site cellular Potts model (Graner and Glazier, 1992),

whilst the former resembles the approach of classical cellular

automata.

2.2 Splitting, merging, and inherent
heterogeneity

A characteristic feature of vascular networks in many

contexts is their complex branching structures, with individual

vessels splitting off and subsequently merging with others to

create intricate heterogeneous vasculatures. In order to replicate

this common topology, we include minimalistic mechanisms for

the splitting of agents and their merging with both each other and
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any vessel trails, once again seeking simplicity and

phenomenology in our model and implementation to facilitate

ready and interpretable exploration.

To capture regular but asynchronous branching in the model

vascular network, we implement an agent-specific timer that

determines when an agent will split in two, crudely mimicking

the duration of a mitotic cycle within the cell, which has been

modelled elsewhere and in other contexts with varying degrees of

complexity (Ferrell et al., 2011; Figueredo et al., 2013; Van

Liedekerke et al., 2015; Poleszczuk et al., 2016). At each

timestep, the timer is decremented towards zero. Upon

reaching zero, a new agent is created on a randomly selected

neighbouring tile of the collision grid to the parent, recalling that

the lengthscale of the collision grid may be interpreted as a proxy

for the size of the agent, with appropriate generalisation for

multi-tile agents. The initial value of each agent’s timer is chosen

uniformly at random and ranges up to a global maximum, θperiod

so that splitting events are asynchronous but occur at prescribed

intervals, though we note that the introduction of agent-specific

mitotic periods presents a simple avenue for the incorporation of

additional heterogeneity. After the creation event, there are many

possibilities for the subsequent behaviours of both the parent and

child agent, with particular biological contexts naturally

informing the specification of such behaviours. Here, we

proceed simply and abstractly, with both the parent and the

child agent deviating from the initial heading of the parent by a

preset splitting angle θsplit in opposite directions. This choice is

sufficient for generating qualitatively plausible network

structures and provides a degree of freedom in specifying the

angle of cell splitting. Recognising that many alternatives are

possible, different behaviours may be readily implemented in

place of this simple choice in the provided implementation, such

as having the parent agent proceed unperturbed by the process of

division. This also includes the clear potential for treating θsplit as

an agent-specific quantity or a random variable, which may

contribute a further source of heterogeneity in future work.

Representing the opposite phenomenon to splitting and

termed anastomoses in the context of vasculature, the merging

or collision of agents, either with other agents or laid trails, is

necessary to generate closed loops in planar vasculature, with

tree-like networks otherwise being the only possibility. Noting

that collisions with both agents and vessel trails can be efficiently

and individually identified via the collision grid, described

further in Section 2.1, it remains to describe how the

behaviour of an agent is modified by a collision. Illustrated in

Figure 2C, the most simple andmost frequent contact interaction

occurs between an agent and a trail, which is resolved by merely

deactivating the colliding agent and joining the two trails,

capturing the merging of a growing vessel with existing

architecture. Other approaches, such as allowing the agent to

pass through a trail, are not consistent with the assumed planarity

of the network. A similar process is implemented when an agent

collides with a boundary, with the agent simply becoming

inactive. The comparatively rare event of agent-agent collision

also proceeds analogously, with one of the agents being rendered

inactive, though the subsequent behaviour of the remaining agent

requires specification. Consistent with our aim of model

flexibility, we allow for the easy specification of behavioural

modification, such as the reorientation of the surviving agent

to the mean heading of the colliding agents. In our illustrative

examples of Section 4, we opt to not alter the behaviour of the

remaining agent at all, and our simulations that follow are

insensitive to this choice.

There are many additional ways in which heterogeneity can

be included in even this simplistic agent-based model of

vasculature development, ranging from temporal evolution of

agent characteristics to differences between individual agents,

both of which are features of biological systems. In the present

model, we have already remarked on the inclusion of qualitative

effects of simple between-agent heterogeneity via the

introduction of statistically independent directional noise and

the distinct initial phases of the agent’s timers that govern their

splitting behaviours. In the next section, we will motivate and

describe how each agent is coupled to its local environment,

which is the most significant source of heterogeneity in the

present modelling framework.

3 Modelling mechanics

Drawing further inspiration from Botryllus schlosseri and its

thin collagenic tunic bed, we model the effects of a surrounding

material upon which the vasculature develops. This material will

influence the direction of vessel growth, with the prominent

direction of the collagen fibres acting as a guide for the agent

motion. In the context of our implementation, this amounts to

the local medium altering the direction of agent movement θi.

More precisely, we quantify the state of the medium by a single

scalar quantity ϕ, which we interpret as the preferred orientation

of fibres in the tunic bed, with ϕ being a function of both space

and time. As illustrated in Figure 3A and with reference to the

relation of Eq. 2, we can now define the phenomenological

mechanical effect term m as a function of agent orientation θ

and the field ϕ via

m θ, ϕ( )∣∣∣∣ ∣∣∣∣ � arccos cos θ − ϕ( )∣∣∣∣ ∣∣∣∣ ∈ 0, π/2[ ], (3)

with the sign of m being such that θ + m ≡ ϕmod π, which we

note is uniquely defined. Here, we are implicitly evaluating ϕ at

the location of the agent with orientation θ, so that the

mechanical response depends on the local state of the tunic

bed. Of note, this response is invariant under both θ↦θ + π and

ϕ↦ϕ + π, so that the magnitude of m is precisely the unsigned

acute angle between the orientation of the agent and the preferred

orientation of the bed. This also assumes a lack of directionality

or polarity of the mechanical features, as might be associated with
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biopolymers embedded in the external environment. Hence, the

mechanical effect termm captures a notion of non-alignment, as

depicted in Figure 3A. For completeness, we now state Eq. 2 more

precisely as

θi t + δt( ) � θi t( ) + km θi t( ), ϕ xi t( ), yi t( ), t( )( ) + nξ, (4)

where i ∈ I indexes the agents. In particular, if k = 1, then θi (t +

δt) ≡ ϕ(xi(t), yi(t), t)mod π in the absence of noise, so that the

motion of the agent aligns perfectly with the bed.

With ϕ thereby influencing the direction of the agents

moving on the tunic bed, the details of the feedback that

agents have on the bed, and indeed the nature of ϕ itself,

must be specified. Here, we opt for an abstract approach that,

rather than being tied to particular materials or phenomena, will

afford significant flexibility and simple interpretation. In

particular, our approach is inspired by classical techniques in

differential equation theory, such as Green’s function

approaches, which express solutions as the superposition of

basis functions. Whilst we do not have an explicit underlying

differential equation model, we will suppose that ϕ may be

written as a sum of basis functions f at any given instant in

time. This assumes that a principle of spatial superposition exists

in our idealised, phenomenological setting and results in

sufficiently rich dynamics to capture a qualitatively plausible

notion of mechanical feedback, in line with the objectives of this

study. In symbols, we define

ϕ x, y, t( ) � ∑
j∈J

wj t( )f x, y,Xj, Yj( ) + ϕ0 x, y( ), (5)

where J is a finite indexing set that labels the locations (Xj, Yj) of

the basis functions,wj is the corresponding weight assigned to the

jth basis function, and ϕ0 is the initial state. The locations (Xj, Yj)

may be specified in a potentially unstructured manner, though

here we simply distribute the basis functions on a uniform

Cartesian grid, coarser than the collision grid by a factor of

ten in each direction. We further approximate ϕ as being

piecewise constant on a nearest-neighbour discretisation of the

space via the grid of basis functions, so that ϕ(x, y, t) ≈ ϕ(Xj, Yj, t),

where (Xj, Yj) is the closest gridpoint to (x, y). This affords

significant computational efficiency, with the basis functions able

to be pre-evaluated on the grid and linear combinations of these

values calculated as needed during simulations. This efficiency is

feasible due to the time dependence of the preferred orientation ϕ

being encoded only in the weights wj, with the wj being modified

by the growth of nearby vessels and thereby linking the tunic bed

to the movement of the agents.

Before specifying how the weights evolve over time, we first

note that there is considerable freedom in the choice of basis

function f. In particular, noting the diversity of linear partial

differential equations, such as those of Stokes flow, this seemingly

restrictive ansatz enables the inclusion of a range of effects and

qualitative properties of the material bed. Here, hoping to explore

non-local mechanical effects, we will assume the simple form

f x, y,X, Y( ) � 1

λ x −X( )2 + y − Y( )2[ ] + 1
, (6)

where λ determines the lengthscale over which the effects of this

basis function decay. Our minimal choice indeed captures the

notion of non-locality, with changes to the wj propagating

throughout the domain. Notably, this function is non-

singular, so that f (X, Y, X, Y) is well defined, and it satisfies

the condition f (X, Y, X, Y) = 1, which we will assume throughout

for notational convenience only. More generally, fmay readily be

FIGURE 3
Updating the state of the tunic bed. (A) An illustration of the mechanical effect termm (θ, ϕ), whose magnitude is the acute angle between the
heading of the agent, θ, and the current state of the bed, ϕ. The heading and the preferred orientation of the bed are displayed as black arrows,
annotated with the Cartesian components of the two directions. (B) The discrete grid (Xj, Yj) on which the basis functions are located is shown
superimposed on the path of an agent as hollow circles, with those grid points closest to the trajectory, shown filled, having their weights wj

updated following Eq. 7.

Frontiers in Systems Biology frontiersin.org07

Walker and Dawes 10.3389/fsysb.2022.901210

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.901210


substituted for complex or biologically motivated forms in order

to capture particular effects, such as material anisotropy or

longer-range impacts. Our minimalistic, singularity-inspired

approach bypasses the need for complex numerical solvers,

thus affording significant efficiency whilst enabling qualitative

freedom, though at the cost of quantitative accuracy.

Returning to the weights wj, we will pose an update rule that

captures our interpretation of ϕ as a preferred direction, such that

if an agent moves along the direction specified by ϕ, so that

locally θ ≡ ϕmod π, then the state of the bed is unchanged and the

corresponding weight is accordingly unmodified. Consistent

with this, we will seek a rule where larger differences in

orientation give rise to larger modifications to wj, as is

intuitive. Noting the duality between this sought response and

the posed mechanical effects of the bed on agent motion, the

response of the bed can be succinctly encoded via the same

mechanical effect term, m. Explicitly, we pose

wj t + δt( ) � wj t( ) − κm θi t( ),ϕj Xj, Yj, t( )( ) (7)

where j ∈ J is the index of the nearest basis function to agent i ∈ I

and κ ∈ [0, 1] modulates the remodelling of the bed. In this

formulation, κ = 1 corresponds to perfect remodelling of the

medium by the vasculature, whilst κ = 0 represents a medium

that is unaffected by vessel growth. In symbols, this entails that,

when κ = 1 and all other weights remain unchanged, we have

ϕ(Xj, Yj, t + δt) = θi(t)mod π, precisely mirroring the case of k = 1

in the context of agent reorientation. In our implementation,

acknowledging that an agent may pass close to multiple points

(Xj, Yj) during its motion in a single timestep, this update rule is

applied to all wj that are nearest to the agent at some instant

within a timestep, as illustrated in Figure 3B. With this update

rule, we remark that our chosen form of ϕ does not converge to a

limiting value as the resolution of the grid increases, as we have

opted to parameterise our updates of the wj by the interpretable

parameter κ. In particular, our assertion that κ = 1 corresponds to

perfect pointwise remodelling prohibits this notion of

convergence. However, should convergence be desired in a

given application, one may opt instead for an update rule that

scales the weights inversely with the density of the grid, which

readily yields convergence in the high resolution limit, though is

not compatible with our interpretation of κ. Consistent with our

goal of intuitive implementation and computational efficiency,

we consider a fixed discretisation where convergence in this limit

is not required.

4 Exploring mechanical feedback

We implement our agent-based model as described, freely

available at (Walker and Dawes, 2022). In what follows, we will

explore our minimal model of vascular development and a

coupled mechanical bed in the context of Botryllus schlosseri,

adopting an annular domain in line with the morphology of this

model organism. In order to mimic observed growth dynamics of

the vascular network, in what follows we will initialise agents on

the inner boundary of the annulus, with initial headings aligned

radially from the annulus centre. We will simulate growth until

all agents have terminally collided with the laid vessel trails, the

boundary of the domain, or one another. Typically, we will begin

with between eight and twenty agents, with reference to the

typical vasculature of Botryllus, though the explorations below

are robust to variations in this initial condition as well as to

differing refinements of the collision grid and ϕ discretisation,

which we specify here as 1,000 × 1,000 and 100 × 100 uniform

Cartesian grids, respectively. Full details of the parameters and

initial conditions employed in each exploration below

accompany the example implementation (Walker and Dawes,

2022) and are summarised in appendix 1.

4.1 Mechanics-free network growth

Firstly, as a qualitative verification of the basic behaviours of

the framework, we simulate the development of a vessel network

in the absence of any mechanical effects, equivalent to setting k =

κ = 0. The small scale of the Botryllus-inspired problem and the

minimal nature of the model lends itself to rapid computation,

with a single simulation typically taking 0.5 s on standard

personal desktop hardware (Intel Core i7-6920HQ CPU). In

Figure 4A, we show a typical simulated vascular network via the

collision grid, which we recall records the locations of the vessels

and agents in the annular domain. The qualitative agreement

between the emergent network structure and observed

vasculature demonstrates the capability of minimal models to

reflect observed networks, at least at a phenomenological level. In

Figure 4B and Figure 4C, we highlight occurrences of merging

and splitting, respectively, colouring each vessel trail by the agent

that laid it for clarity in these panels, which gives rise to the

complex and interconnected structure seen in Figure 4A.

4.2 Remodelling and periodic regrowth

Having established qualitative validity of the most basic

behaviours of the model, we now test the ability of the

framework to capture a notion of agent-driven remodelling of

the extracellular bed. To do so, we set k = 0 and take κ ≠ 0, so

that the agents move independently of the bed whilst modifying its

configuration. We begin with the bed in an initially aligned state,

taking ϕ0 (x, y) = 0 everywhere to yield a horizontally directed bed, as

illustrated in Figure 5A. Drawing inspiration from the periodic

regrowth of vasculature seen in Botryllus, we then repeatedly

simulate the growth dynamics of vasculature, beginning each

new cycle with agents on the inner edge of the annulus. With κ

≠ 0, the agents modify the bed as they move, with these
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FIGURE 4
The growth of a network in an annulus in the absence of mechanical effects. (A) A simulated vascular network growing outwards from the inner
edge of the annulus, in qualitative agreement with canonical network structure. Vessel trails are shown as thin black curves in this illustration, with all
agents (not shown) having collided with vessel trails, the boundary of the domain, or one another. (B,C) The close-up vascular network, with
instances of (B) collisions and (C) splitting of agents, indicated by black circles and the paths of individual agents shown in distinct colours for
clarity. The snapshots of (B) and (C) correspond to the outlined regions of the full network shown in (A), with the arrows displaying the general
direction of agent movement during growth. Here, we have initialised agents facing radially outwards from the inner edge of the annulus and taken
k = κ = 0, with other parameters summarised in Appendix A1.

FIGURE 5
The remodelling of the extracellular bed. (A) The initially uniform preferred orientation of the external bed is illustrated by grey oriented dashes,
which are at an angle ϕ = 0 from the horizontal, sampled in the annular domain of vascular development. Of note, we do not distinguish between ϕ
and ϕ + π, a property captured by this manner of visualisation. (B) The state of the bed after 30 cycles of growth, overlaid with the grown vasculature.
The initial horizontal configuration of the bed has been eroded by the repeated growth of the vasculature. (C)A close-up view of the rectangular
region outlined in (B), highlighting the approximate local alignment of the bed with the vessel network. (D) Measures of overall bed alignment over
multiple cycles of regrowth. The measure of horizontal bias, bH, can be seen to quickly decay to the value expected for a uniformly distributed ϕ,
shown as a horizontal line, whilst the measure of alignment to a radial distribution, bR, draws closer to unity, indicative of an approximately radial
distribution of ϕ. Here, we have taken k = 0 and κ = 0.1, with other parameters summarised in appendix 1.
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modifications persisting between each cycle and the external bed

thereby acting as a form of persistent mechanical memory.

Figure 5B and Figure 5C display the state of the bed after

30 cycles of growth, by which time the initial horizontal

configuration has been eroded to a more disordered state. We

can quantify this divergence from uniformity via a simple

measure of bias bH, defined for a given fully grown network as

bH :� 〈 cos ϕ x, y( ) − 0[ ]∣∣∣∣ ∣∣∣∣〉, (8)

where 〈 · 〉 denotes a spatial average. Computing this quantity

discretely by sampling ϕ at (Xj, Yj) for j ∈ J, which we recall

indexes the locations of the basis functions, we plot this measure

of bias in Figure 5D. With an initial value of unity, representing

perfect horizontal bias, we see that this measure collapses

approximately to 2/π, the value expected of uniformly

distributed ϕ. Also shown in Figure 5D is an analogous

measure of radial bias, defined as

bR :� 〈 cos ϕ x, y( ) − arctan y, x( )[ ]∣∣∣∣ ∣∣∣∣〉, (9)

where, here, Cartesian coordinates (x, y) are such that the centre of the

annulus is at (x, y) = (0, 0) and arctan is the four-quadrant inverse

tangent. Of note, bH = 1 implies that ϕ≡ 0modπ, whilst bR = 1 occurs

only when ϕ is purely radial. Hence, the approach of bR towards unity

and bH away from unity overmany cycles of growth suggests a notion

of convergence of ϕ away from the horizontal state towards a radial

state, as might be expected given the radial initial headings of the

agents and the directional persistence included in our formulation.

4.3 Mechanics-dominated growth

Wenow consider the opposite case to the above, one in which

the tunic bed influences the development of the vasculature but is

itself static, corresponding to κ = 0 and k ≠ 0. In Figure 6, we

illustrate the effects of an outwardly spiralling field ϕ, which

significantly alters the growth of the vessels, having taken k = 0.3

in this example. The impacts of the spiral-like structure of the

extracelluar bed, itself depicted in Figure 6C and given by ϕ(x, y,

t) = ϕ0 (x, y) = arctan (− x − y, y − x), are readily observable in

Figure 6A, with the vessel network displaying a vastly similar

character to the influencing external medium. Despite the strong

coupling between the bed and the growing vessels, the distorting

effects of noise and agent splitting still serve to generate an

intricate structure. Nevertheless, the grown vessels are

approximately aligned with the preferred heading encoded in

ϕ, as can be seen in the close-up view of Figure 6B, where the

direction of the extracellular medium is shown as grey dashes.

Increasing k results in networks that even more closely track the

spiralling field, though the formation of loops via collisions is

inhibited by the strongly prescribed motion.

FIGURE 6
The mechanics-dominated growth of a network. (A) The developed vasculature, whose growth was strongly influenced by a spiral-like
extracellular bed of fixed configuration. Accordingly, the vessel network resembles an anticlockwise spiral, though we note that noise and splitting
events give rise to a complex network structure. (B) A close-up view of the rectangular region outlined in (A), with the fixed state of the extracellular
bed shown as grey dashes, which represent the preferred direction of the bed. (C) The initial and unchanging state of themodel tunic bed, which
spirals anticlockwise and outwards from the inner edge of the annular domain. Here, we have taken k = 0.3 and κ = 0, with other parameters
summarised in Appendix A1.
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4.4 Regrowth, remodelling, and
mechanical influence

Having tested and illustrated the various behaviours and

phenomenology captured by our model in relative isolation, we

investigate a scenario where the tunic bed and the vasculature are

fully coupled, taking k ≠ 0 and κ ≠ 0. In particular, adopting the

horizontally aligned initial field ϕ of Figure 5A, in Figure 7 we

explore the evolving vessel networks generated over successive

cycles of growth, capturing how the extracellular medium is altered

with each iteration. Here, we have taken k = 0.8 and κ = 0.3, which

represent strong mechanical influence and moderate remodelling,

respectively. In Figure 7A, we show the vasculature after a single

cycle, from which the guiding effects of the bed are evident in the

broadly horizontally aligned network. Of note, after this single

cycle of growth, the state of the medium is no longer perfectly

aligned to the horizontal, with the vessels having altered the nearby

weights wj during their growth. By the 10th cycle, shown in

Figure 7B, the bias of the horizontal initial state of the tunic is

still visible, but has been significantly eroded by the repeated

stochastic growth of the vessel network. At the conclusion of

the final cycle of growth, illustrated in Figure 7C, the influence of

the initial condition has all but vanished, with the grown network

appearing approximately radial, similar in alignment to that of

Figure 5B. However, in contrast to Figure 5B, the strong coupling

of the vessel growth to the state of the tunic bed entails that

neighbouring vessels grow in approximately parallel directions,

leading to tightly packed vasculature, as highlighted in the close-up

view of Figure 7D. Quantitatively, the waning of the initial

horizontal alignment of the bed is captured by the bias bH,

illustrated in Figure 7E alongside bR, which also demonstrates

approximate convergence towards radial alignment.

4.5 Non-locality and flocking

In the above, we’ve seen how the model tunic bed can

significantly influence the growing vasculature, as well as how

the development of vessels can remodel the substrate. Here, in

our final exploration, we will highlight a behaviour that emerges

due to the inherent non-locality of the mechanical bed, which is

difficult to discern qualitatively in the previous examples. Indeed,

thus far, the major impact of the non-local form of ϕ in Eq. 5 has

been only to render the directional field of the tunic as a smooth

function of space, which features in all of the previous examples.

In particular, we will consider the same mechanical setup as

that of Figure 5, with ϕ initially corresponding to a perfectly

horizontal alignment. However, with reference to the parameters

listed in Appendix A1, we now increase the effective range of the

basis functions f, which contribute to ϕ via Eq. 5, by an order of

magnitude, seeking to emphasise the potentially significant role

of non-locality. In Figure 8, we illustrate multiple instances of

growth, beginning with 20 agents on the inner boundary of the

annular domain. Each of these examples serves to highlight an

emergent collective behaviour, which we term flocking, where the

vessels have grown in markedly similar but evolving directions,

crudely reminiscent of the canonical collective motion of birds or

fish. Here, this behaviour has emerged as the result of agents

modifying the local state of the tunic bed, changes which then

propagate to neighbouring vessels that, in turn, align along the new

FIGURE 7
Mechanically coupled cyclic regrowth of a vessel network. (A,B,C) Beginning with a horizontally aligned bed, as in Figure 5A, we simulate
100 cycles of vascular regrowth, with the vessels both modifying and being influenced by the tunic bed. We illustrate the grown networks and the
state of the bed after 1, 10, and 100 cycles of growth in (A), (B), and (C), respectively. The initial configuration of the bed has a clear influence on the
grown vasculature in (A), though the persistence of the initial state wanes over successive cycles of growth, with (C) approximately resembling a
radially configured bed. (D) A close-up view of the rectangular region outlined in (C), fromwhich we note that vessels are indeed splitting, though the
strong coupling of growth direction to the tunic bed ensures that neighbouring vessels grow almost parallel to one another. (E)Measures of overall
bed alignment over multiple cycles of growth, showing a sharp decrease in horizontal bias and a steady increase in radial bias, consistent with the
erosion of the horizontally aligned initial state of the bed. The value of bias expected for a uniformly distributed ϕ is shown as a horizontal line. Here,
we have taken k = 0.8 and κ = 0.3, with other parameters summarised in appendix 1.
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direction. Further, we see that the effects on behaviour are nuanced

and are not global, with the vasculature on the left and right sides of

Figure 8A having evolved in non-colinear directions. Additionally,

we see that local branching can cause the separation of ‘flocked’

vessels, as can be seen in Figure 8C. Hence, we observe that the

inherent potential for non-locality in our framework is capable of

giving rise to complex and emergent collective behaviours, mediated

by the non-local mechanics of the bed.

5 Discussion

In this study, we have described, implemented, exemplified,

and explored an agent-based model for simulating the

development of mechanically dominated vascular networks.

Noting the common complexity and intricacy of agent-based

modelling frameworks in mathematical biology, we have sought

to utilise minimal and simple schemes to realise phenomenology

in each aspect of our model, which we have detailed, motivated,

and illustrated throughout. In addition to facilitating

independent reproduction and verification of model outputs,

this simplicity has afforded significant computational efficiency

and interpretability to our framework. This latter feature is

evident throughout Section 4, with the behaviours observed in

our explorations being easily and readily relatable to the specific

parameter choices and set-up of each example, with confounding

factors minimised. As such, we expect that a primary future

utility of the model will be in exploration and qualitative

hypothesis testing, with the links between cause and effect not

obfuscated by complex underlying systems or design choices.

Our ethos of seeking simplicity and phenomenology also

extended to the primary focus of this work, which has been the

introduction of mechanical guidance cues in place of chemotactic

signals, the latter being appropriately commonplace in vascular

models. Motivated in part by the model organism Botryllus

schlosseri, whose morphology and environment suggests a

subdominance or absence of chemical effects, we have sought

to include the effects of a guiding external substrate on the growth

of the network, with the directions pursued by the vessels being

influenced by the state of a mechanical tunic bed. In posing our

model of the mechanical bed, we have pursued phenomenology,

rather than be tied to the properties of a particular material,

resulting in a simple superposition-based model that

nevertheless captures rich effects that are qualitatively plausible

for a mechanical substrate. This model also lends itself to a

computationally efficient implementation, in principle further

enabling the rapid and lightweight enquiry that is well suited to

exploratory study, at least at the level of qualitative effects.

In exploring the consequences of our modelling choices, we

have encountered features and behaviours that might not be

expected of networks shaped by chemotaxis. For instance, in

Section 4.4, the state of the tunic bed served as an effective

memory for the periodically regrowing vasculature, which is

highlighted in the extreme example of Section 4.3. These

examples illustrate the ability of the proposed model to

capture an intuitive notion of an environmentally shaped

network, one in which mechanics guides the evolution of the

network structure. Further, in our final examples, we have also

seen how agents can erode and reshape the shared external

medium, with the evolving network altering the environment

and, in turn, the evolution of future vasculature on the same

substrate. In the context of periodically regrowing vasculature,

this prompts future evaluation of the hypothesis that such a

mechanical effect can give rise to an approximately convergent

network structure, noting in particular the approximate

convergence of the tunic bed in Figure 5.

FIGURE 8
Mechanics-mediated collective behaviour. (A,B,C) Three vascular networks grown from the same initial state, with ϕ0 = 0, dominated by the
long effective range ofmodifications to themechanical bed. With non-locality enhanced compared to previous explorations, an emergent collective
behaviour is visible, with vessels closely following the paths of their neighbours due to the coupling to the tunic bed. The potential for nuance, as
opposed to a uniform global behaviour, is evidenced in (A), where ‘flocks’ of agents move in non-colinear directions, whilst a complex splitting
of flocks is visible in (C). Here, we have taken k = 0.8, κ = 0.8, and λ = 10, the latter greatly decreased from previous explorations, with other
parameters summarised in appendix 1.
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Perhaps most remarkable amongst our observations is the

flocking behaviour seen in Section 4.5, wherein nearby agents

move in a collective fashion. Though such a clustered flocking

might be expected of chemically driven development, with

nearby agents sensing similar chemical cues, here this

collective behaviour emerges via mechanics alone, with the

non-local nature of the bed acting as a form of inter-agent

communication. Hence, this suggests that chemical cues are

not required for the realisation of coordinated growth

dynamics, with mechanically inspired non-local directional

cues able to evoke this comparable behaviour in silico. We

have also seen that there is considerable nuance to these

mechanical effects, in that there still exists a balance between

non-local cues and local, agent-level effects, as illustrated in the

splitting and diverging flocks of Figure 8C and the non-colinear

trajectories of Figure 8A, for instance.

In this initial work, our explorations have been limited both to

two dimensions and to a particular, isotropic form of mechanical

basis function. Each of these aspects represents a broad avenue for

future generalisation and enquiry, with the introduction of material

anisotropy through varied basis functions likely being a route for

further development and diverse exploration. As more detailed

information about mechanical properties influencing

vasculogenesis becomes available, the modelling framework

proposed here can be easily extended to incorporate more

complex and faithful interactions. For now, in the absence of

evidence to support or refute biological choices in the model, we

view the model as a tool to enable the development of insight and

intuition into currently under-explored systems. The consideration

of network growth in three dimensions, as is more faithful to many

biological circumstances, overall represents aminormodification to

the proposed framework, though due care is needed in the

treatment of agent orientation in three dimensions. Nevertheless,

the two-dimensional examples explored in this work remain of

pertinence to model organisms, whilst representing a natural

testbed for the initial study of the impacts of mechanical effects

on network development. Further, within this constraint, there is

considerable scope for the exploration of more complex and

alternative domains for vascular growth, noting that it is simple

to generalise the annular Botryllus-inspired domain studied in this

work. As an example, this could include the study of simulated

excision experiments, where regions of the tunic bed of Botryllus are

surgically ablated and subsequently regenerated by the organism

(Gasparini et al., 2015), which represents a promising direction for

future enquiry into mechanically influenced vessel development.

In summary, we have presented and exemplified a simple

computational model for the exploration of the role of mechanics

in the growth of vascular networks. Throughout, we have opted

to make minimal, intuitive design choices that facilitate ready

interpretation and rapid simulation, which has enabled us to

explore a variety of examples and regimes. In doing so, we have

seen how a phenomenologically modelled mechanical substrate

can act as an effective and malleable memory for growing

vasculature, giving rise to complex and evolving network

structures that are reminiscent of canonical vessel networks.

Further, we have evidenced the potential for mechanical

effects to perform a role typically associated with diffusive

chemical species, here resulting in the emergence of complex,

mechanically mediated collective behaviours.
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Appendix A1: Simulation parameters

The dimensionless parameters used in the generation of

the figures shown in the main text are given in Table A1, and

can also be found accompanying the provided

implementation (Walker and Dawes, 2022). In all

simulations, we have adopted an annular domain of inner

and outer radii of 0.1 and 1, respectively, with all quantities

being dimensionless. The Cartesian grids for the collision grid

and the basic functions are at a resolution of 1,000 × 1,000 and

100 × 100, respectively, each distributed in the square domain

[ − 1, 1] × [ − 1, 1].

TABLE A1 Simulation parameters. We document the dimensionless simulation parameters used to generate the examples shown in the figures
throughout the manuscript, which are also provided with the accompanying implementation (Walker and Dawes, 2022). Parameters in the lower
section of the table are fixed in all simulations.

Parameter Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Description

K 0 0 0.3 0.8 0.8 Mechanical influence

Κ 0 0.1 0 0.3 0.8 Remodelling strength

λ - 1,000 1,000 1,000 10 Locality of mechanics

N (0) 16 20 20 8 20 Initial number of agents

δt 1 Timestep

V 0.01 Agent speed

σ2 0.01 Variance of noise

θperiod 25 Splitting period

θsplit π/6 Splitting angle
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