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Abstract
Pattern formation has been extensively studied in the context of evolving (time-
dependent) domains in recent years, with domain growth implicated in ameliorating
problems of pattern robustness and selection, in addition tomore realistic modelling in
developmental biology.Mostwork to date has considered prescribed domains evolving
as given functions of time, but not the scenario of concentration-dependent dynam-
ics, which is also highly relevant in a developmental setting. Here, we study such
concentration-dependent domain evolution for reaction–diffusion systems to eluci-
date fundamental aspects of these more complex models. We pose a general form of
one-dimensional domain evolution and extend this to N -dimensional manifolds under
mild constitutive assumptions in lieu of developing a full tissue-mechanical model.
In the 1D case, we are able to extend linear stability analysis around homogeneous
equilibria, though this is of limited utility in understanding complex pattern dynamics
in fast growth regimes.We numerically demonstrate a variety of dynamical behaviours
in 1D and 2D planar geometries, giving rise to several new phenomena, especially near
regimes of critical bifurcation boundaries such as peak-splitting instabilities. For suffi-
ciently fast growth and contraction, concentration-dependence can have an enormous
impact on the nonlinear dynamics of the system both qualitatively and quantitatively.
We highlight crucial differences between 1D evolution and higher-dimensional mod-
els, explaining obstructions for linear analysis and underscoring the importance of
careful constitutive choices in defining domain evolution in higher dimensions. We
raise important questions in the modelling and analysis of biological systems, in addi-
tion to numerous mathematical questions that appear tractable in the one-dimensional
setting, but are vastly more difficult for higher-dimensional models.

B Andrew L. Krause
andrew.krause@durham.ac.uk

1 Mathematical Sciences Department, Durham University, Upper Mountjoy Campus, Stockton Rd,
Durham DH1 3LE, UK

2 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew
Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK

3 Department of Mathematics, University College London, London WC1H 0AY, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01115-2&domain=pdf
http://orcid.org/0000-0001-9638-7278


   14 Page 2 of 28 A. L. Krause et al.

Keywords Pattern formation · Evolving domains · Linear instability analysis

1 Introduction

In proposing his chemical theory of morphogenesis, Turing was clear about the sim-
plifications made to idealize this theory of pattern formation to its core mechanism
of a diffusion-driven instability (Turing 1952). In addition to the enormous experi-
mental and theoretical literature exploring this mechanism, an important avenue of
research has been extending Turing’s simple theory to ever-more-realistic scenarios
incorporating extensions of reaction–diffusion models. For example, there is now
a wide literature studying pattern formation in stochastic Turing systems (Woolley
et al. 2011; Erban and Jonathan Chapman 2019; Adamer et al. 2020), mechanical
and mechano-chemically coupled models (Murray and Oster 1984a, b; Oster et al.
1985; Murray 2004; Vaughan Jr et al. 2013), gene-expression time delays in reaction–
diffusion systems (Gaffney and Monk 2006; Seirin Lee et al. 2010; Sargood et al.
2022), cross-diffusion and other generalized transport mechanisms (Ritchie et al.
2022), reaction–diffusion patterning on manifolds and networks (Plaza et al. 2004;
McCullen andWagenknecht 2016; Ide et al. 2016; Krause et al. 2019), larger numbers
of morphogens (Diego et al. 2018; Scholes et al. 2019), and a host of other generaliza-
tions that explore Turing’s basic insight regarding diffusion-driven pattern formation
in increasingly complicated settings; see (Krause et al. 2021) for a broad review. Such
extensions relax assumptions that Turing originally made, and add nuance to the core
idea of a diffusion-driven instability leading to pattern formation.

One such assumption is the idea that reaction–diffusion processes ‘pre-pattern’
morphogens, which then influence cells downstream to induce changes in cell fate
and, hence, spatial organization of tissue structure. The role of spatial heterogeneity
in reaction–diffusion systems has been explored extensively in recent years (Maini
1995; Page et al. 2003, 2005; Green and Sharpe 2015; Krause et al. 2018, 2020),
plausibly capturing hierarchical pattern formation observed experimentally. There is
an inherent separation of timescales needed to justify such an approach to hierarchical
pattern formation, in turn motivating studies where this assumption is relaxed with
instead tissue restructuring and morphogen dynamics occurring concomitantly on
similar timescales in development.

Further related to timescales of reaction–diffusion signalling and tissue restruc-
turing is the role of domain growth, which has also been heavily studied (Crampin
et al. 1999, 2002a, b; Plaza et al. 2004; Van Gorder et al. 2021). It is likely that
domain growth and restructuring are not downstream of morphogen patterning in
many cases, but concomitant processes instead (Boehm et al. 2010). Onemajor insight
from these models incorporating domain growth is some amelioration of robustness
problems inherent to Turing-type patterning, whereby marginally different initial con-
ditions may evolve to quantitatively different numbers of pattern elements (Maini
et al. 2012). Crampin et al. (1999) showed that domain growth could instead lead to
a predictable sequence of spike-doubling in 1D reaction–diffusion models, and Ueda
and Nishiura (2012) and others have confirmed that this spike-doubling phenomena
occurs in generic 1D systems in certain circumstances, such as when the growth is
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sufficiently slow. While these studies have given important insights into how growth
impacts pattern formation, they all consider cases where the domain evolution is
explicitly prescribed, and hence cannot account for the feedback between signalling
and domain evolution.

There is also a robust chemical setting exploring reaction–diffusion patterning in
analogues of growing domains using the photosensitive CDIMA reaction and related
chemical systems; see (Konow et al. 2021) for a recent review. Liu et al. (2022)
explored a model of this reaction system in terms of a ‘wave of competence’ to pattern
formation, and made comparisons to its use as a model of a growing domain. One
key point raised in the work by Liu et al. (2022) was that the boundary conditions in
such a model likely do not correspond to a moving boundary with simple Neumann
or Dirichlet conditions, but possibly something more intricate involving the current
concentration on either side of the system.

Following the original formulation of local domain growth given by Crampin et al.
(1999), several authors have considered models of concentration-dependent growth
(Dillon and Othmer 1999; Neville et al. 2006; Baker and Maini 2007; Seirin Lee
et al. 2011b). These studies highlighted a number of important issues in modelling the
feedback between domain growth and signalling dynamics, notably the importance of
dilution of the domain impacting the structure of pattern elements, aswell as the impor-
tance of careful constitutive choices made in understanding the complex interplay
between domain growth and pattern formation. In most of these studies, the focus was
primarily on the slow-growth regime that was qualitatively comparable to prescribed
growth scenarios, with only small apparent impacts of concentration-dependence on
the overall domain evolution in comparison to prescribed growth scenarios. Neville
et al. (2006), following work by Ward and King (1997), did explore faster growth
regimes, implicating dilution effects in impacting concentration profiles and, hence,
leading to more complex interactions. We also mention that Seirin Lee et al. (2011b)
explored the impact of gene-expression timedelays in concentration-dependent growth
dynamics, which had a nontrivial impact on the timescales and ability for systems to
admit spatial patterns.

There is also a large literature developing numericalmethods for these kinds of PDE
models. In more than one spatial dimension in particular, there are several different
choices of numerical approach for growing domains including moving finite-element
meshes (Barreira et al. 2011;Dziuk andElliott 2013), phase-field approaches (Tauriello
andKoumoutsakos 2013; Tam and Simpson 2022), and arbitrary Lagrangian–Eulerian
frameworks (MacKenzie et al. 2021). Outside of the applications in pattern formation
and morphogenesis, there is a growing literature on concentration-dependent domain
growth and restructuring in oncology, cell polarity, chemotaxis, and other areas (Chen
and Lowengrub 2014; MacDonald et al. 2016).

Another common approach for concentration-dependent growth is to consider
models of Stefan-like moving boundary problems, which depend on the local concen-
trations at the boundary (Yihong and Lin 2010; Sharma and Morgan 2016; Hadeler
2016; Bao et al. 2018; El-Hachem et al. 2019; Sharma et al. 2021; Murphy et al.
2021; Jepson et al. 2022). Such models have been studied intensively in terms of
existence theory, travelling waves, and their applications in ecology, epidemiology,
and the spreading of cells in developmental and oncological settings. More recently,
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such models have been explored in terms of reaction–diffusion patterning of a moving
boundary (Tam and Simpson 2022), reminiscent of work on wave-initiated patterning
(Myerscough andMurray 1992; Krause andVanGorder 2020) but with the importance
that the domain is not fixed. In some cases these moving boundary problems can be
seen as a special case of highly localized domain evolution, as shown in the apical
growth case of Crampin et al. (2002b), though it is not always the case that one can
find an equivalence between these two classes of models, especially in two or more
spatial dimensions.

At the tissue-scale, all of the models above use PDE-based models derived from
conservation ofmass and focus on themorphogen dynamics, while tending to discount
the cells themselves (noting the exceptions that Ward and King (1997); Neville et al.
(2006) do discuss the importance of mitosis and cell death in these interactions). In
comparison, there is now a large computational literature using cell-based and tissue-
scale models from other formalisms, such as vertex-based and cellular-Potts models
(Osborne et al. 2017; Sharpe 2017; Metzcar et al. 2019; Fletcher and Osborne 2022).
Section 7 of Groves et al. (2020) provides an overview of concentration-dependent
growth models of the morphogen Shh, as well as some discussion of how likely it is
that patterning and growth are concomitant processes. These models, and particularly
approaches fitting them to data about cell movement and tissue morphogenesis such
as Spiess et al. (2022), are valuable for matching simpler theoretical insights regarding
domain restructuring and morphogen signalling.

Here, we consider a simple framework of concentration-dependent growth within
the more classical PDE-based approaches in order to elucidate basic theoretical prop-
erties of feedbacks between domain evolution and morphogen patterning. We follow
the ideas of Crampin et al. (1999), Baker and Maini (2007), and Seirin Lee et al.
(2011b), where we model a local volume element of the tissue as either expanding or
contracting in time, depending on morphogen concentration. We present a version of
such a model for a general N -dimensional manifold in Sect. 2, as in the prescribed
growth models of Plaza et al. (2004) and Van Gorder et al. (2021), showing why local
volume evolution is insufficient to fully characterize the evolution of either the domain
or the concentrations for N > 1, necessitating further constitutive assumptions. In the
1D case, we use the framework of Van Gorder et al. (2021) and Van Gorder (2020) to
perform a linear stability analysis of homogeneous base states in Sect. 3, deriving an
extra term arising due to concentration-dependence. We numerically explore the 1D
model in a variety of less-explored regimes in Sect. 4, namely those involving domain
contraction and rapid local evolution, where dilution leads to complex interplays of
pattern structure and domain evolution, mediated both by the size of the domain but
also by the impact of highly localized dilution. We then pose a simple constitutive
model for N -dimensional manifolds that is both simple and plausible. We explore
this model numerically in 2D planar geometries, demonstrating simple but important
lessons in the constitutive choices made, as well as striking behaviours of patterns
even in simple concentration-dependent settings. We close with a discussion of our
results in Sect. 6, highlighting in particular the rich and unexplored dynamics of these
systems. One important insight described here is the tractability of the 1D system to
mathematical exploration and how this contrasts the difficulties in both modelling and
analysis for any higher-dimensional generalizations.
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2 A Simple Model of Concentration-Dependent Domain Evolution

We formulate a general approach to modelling morphogen-dependent growth for N -
dimensional manifold domains with boundaries, and describe concrete versions of this
in one-dimensional and planar domains. We follow the general notation from Krause
et al. (2019) and Van Gorder et al. (2021), though refer to Crampin et al. (1999),
Crampin et al. (2002b), and Seirin Lee et al. (2011a) for an equivalent discussion
using different terminology/notation.

We consider m morphogen concentrations u = (u1, u2, . . . , um) on a compact
evolving domain �(t) ⊂ R

N , focusing on the cases m = 1 and m = 2. We assume
that this domain is bounded by a sufficiently smooth simple closed hypersurface ∂�(t)
for all time t . By considering conservation of mass in a non-dimensionalized setting
and moving to a Lagrangian frame, we find that these morphogens satisfy

∂u
∂t

= D∇2
�(t)u − u

(∇�(t) · a) + f (u), (1)

where D = diag(D1, D2, . . . Dm) ∈ R
m×m is a diagonal matrix of diffusion coeffi-

cients, f (u) ∈ R
m the vector of reaction kinetics, a ∈ R

N the material flow defining
the domain evolution, and ∇2

�(t) and ∇�(t)· are, respectively, the Laplace–Beltrami1

and divergence operators on the domain �(t). The divergence of a represents a
dilution of concentration during domain growth. We will assume no-flux condi-
tions at any domain boundary, and specify initial concentrations u(0, X) where
X = (X1, X2, . . . , Xn)

T ∈ �(0) are the initial Lagrangian coordinates. We will
write the spatial derivatives in terms of a metric tensor G = (Gi j ), written in the
Lagrangian coordinates X , and denote the inverse by H = G−1. In these coordinates,
we have that the Laplace–Beltrami operator can be written as

∇2
�(t)u = 1√| det G|

n∑

i, j=1

∂

∂Xi

(√| det G|Hi j ∂u

∂X j

)
, (2)

and the dilution coefficient as

∇�(t) · a = ∂

∂t
log

(√| det G|
)

. (3)

We note that μ = √| det G| is the coefficient of the volume form, and in Lagrangian
coordinates X can be thought of as the local expansion or contraction of the domain.
We will assume that the domain evolves according to a local isotropic expansion or
contraction at a rate S(t, u), that is,

∇�(t) · a = ∂

∂t
log(μ) = S(t, u). (4)

1 The governing equations can be posed for general N -dimensional manifolds, though we will only pursue
numerical simulations for flat one- and two-dimensional domains.
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As we are mapping from the initial domain �(0) to �(t), we take μ(0, X) = 1. Note
that, for ease of presentation, we are taking for granted that there is a global coordinate
system used to express G locally, though in principle there is no obstruction to defining
the transport terms in more complicated situations that require multiple coordinate
charts, etc. We will also assume that the mappings remain sufficiently smooth, so that,
in particular,

√| det G| > 0 for all time t . We assume that the concentrations satisfy
Neumann boundary conditions along all boundaries throughout this work. We will
primarily be interested in cases where S depends only on the concentrations, rather
than explicitly on time t , but we include this dependence to recover well-studied
models of prescribed growth with S = S(t).

2.1 One-Dimensional Model

As noted by Seirin Lee et al. (2011a), in one spatial dimension Eqs. (1)–(4) can be
made into a closed system by fixing a stationary point in the Eulerian frame (and
the choice of such a point does not influence the dynamics). We can see this by
considering the Eulerian coordinate x(t) ∈ �(t), which is related to the Lagrangian
X ∈ �(0) = [0, L] (for some initial domain length L > 0) by the scalar metric2

μ(t, X) = √|G(t, X)| = ∂x(t)

∂X
. (5)

One can then integrate (5) to determine how material points move. The reaction–
diffusion system (1) then takes the form

∂u
∂t

= D
μ

∂

∂X

(
1

μ

∂u
∂X

)
− uS(t, u) + f (u), (6)

with the growth dynamics given by

∂

∂t
log(μ) = S(t, u). (7)

We can integrate (7) and use (5) to find that material points are given by,

x(t, X) =
∫ X

0
μ(t, y) dy =

∫ X

0
exp

(∫ t

0
S(s, u(s, y)) ds

)
dy, (8)

where we are fixing the Eulerian domain to have the same zero, i.e. x(t, 0) = 0, so
that�(t) = [0, x(t, L)]. Equations (6)–(7) can then be solved on the fixed Lagrangian
coordinates, X ∈ [0, L], (independently of fixing an Eulerian point) and visualized on
the Eulerian domain given by (8).While in theory all of the dynamics is encoded in the
Lagrangian equations alone, in practice the Eulerian domain is also computed to help
simulate these equations, as they can become numerically ill-posed over moderate

2 The last equality here is only unique up to a sign—the choice of the positive sign preserves orientation
between the Lagrangian and Eulerian frames.
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timescales on the Lagrangian domain due to rapid separation or clustering of material
points—see Sect. 4 for details.

2.2 N > 1-Dimensional Model

In two spatial dimensions, Eqs. (1)–(4) do not provide a closed system that uniquely
determines the concentrations and domain evolution. While (4) can be solved for μ,
this does not determine the full metric tensor G, which is needed to interpret the
Laplace–Beltrami operator in (1), as well as to determine how material points move.
Equivalently, there is not a unique flow a which satisfies (3). Here, we will make
some of the simplest possible constitutive assumptions in order to derive a model on a
compact, simply connected N -dimensional manifold. We then focus our analysis on a
two-dimensional planar domain as the simplest example of this. Our assumptions will
be of a kinematic nature, and will neglect a more detailed mechanical consideration
of growing or deforming tissue.

We assume that the local flow is irrotational as a simple constitutive constraint,
together with the assumption that the flow has no tangential component at the bound-
aries of the domain. These two constraints are fully consistent with the assumption
that the flow is generated only by point sources of density scaling with S and that cells
constituting the domain cannot move along the edges of the domain (Sections 2.4, 2.5,
Batchelor (1967)).

With these constitutive constraints, and given sufficient smoothness, we have by the
Helmholtz Decomposition Theorem that the flow a is a conservative vector field, so
that there is some scalar potential φ such that a = ∇�(t)φ. Combining this assumption
with (4), we find that φ satisfies a Poisson equation on �(t) given by

∇2
�(t)φ = S(t, u) (9)

and, by using (2), we can write this as an equation on the Lagrangian domain �(0)
in terms of the metric tensor G in the coordinates X . To complete the specification of
a, we need a suitable boundary condition for (9). Given the further assumption that
the flow at domain boundaries is purely normal, i.e. a · t = 0 on ∂�(t) for any unit
tangent vector t , we have t · ∇�(t)φ = 0, so that φ is constant along ∂�(t). As the
potential φ is only defined up to a spatially uniform function of time, without loss of
generality we set

φ = 0, x ∈ ∂�(t) (10)

where ∂�(t) denotes the boundary. Furthermore, ∂�(t) will be determined by the
material points from ∂�(0), so we can interpret this as a homogeneous Dirichlet
condition on φ in the Lagrangian frame as well.

Finally, in order to relate Eulerian and Lagrangian points, we can write out the flow
as

∂x
∂t

= a = ∇�(t)φ. (11)
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In the N = 2 planar setting, this can be expanded as

∂x1
∂t

= φX1

(
H11 ∂x1

∂X1
+ H12 ∂x1

∂X2

)
+ φX2

(
H21 ∂x1

∂X1
+ H22 ∂x1

∂X2

)
, (12)

∂x2
∂t

= φX1

(
H11 ∂x2

∂X1
+ H12 ∂x2

∂X2

)
+ φX2

(
H21 ∂x2

∂X1
+ H22 ∂x2

∂X2

)
, (13)

where the subscripts denote partial derivatives and x = (x1, x2)T are the Eulerian
coordinates. Equations (12)–(13) consist of a hyperbolic system of first-order partial
differential equations, sowe do not prescribe boundary conditions and instead compute
the flow of material points directly. We can write the inverse metric tensor, H , in terms
of derivatives of the Eulerian coordinates as

H11 = 1

μ2

∣∣
∣∣

∂x
∂X2

∣∣
∣∣

2

, H12 = H21 = − 1

μ2

∂x
∂X1

· ∂x
∂X2

, H22 = 1

μ2

∣∣
∣∣

∂x
∂X1

∣∣
∣∣

2

, (14)

and the coefficient of the volume form as

μ =
√∣∣∣

∣
∂x
∂X1

∣∣∣
∣

2 ∣∣∣
∣

∂x
∂X2

∣∣∣
∣

2

−
(

∂x
∂X1

· ∂x
∂X2

)2

. (15)

Equations (9)-(15) form a closed system for the Eulerian coordinates as functions
of the Lagrangian coordinates, and hence components of themetric tensor, once values
of u are provided to determine S(t, u). That is, Eqs. (1) and (9)-(15) form a closed
system for the evolution of concentrations on an evolving domain, written entirely in
the Lagrangian reference frame.While we will only consider finite planar 2D domains
for numerical simplicity, our formulation works for a general manifold with boundary.

3 Linear Instability Analysis

Here, we provide a linear instability analysis of homogeneous base states (generalizing
homogeneous equilibria) for (1)-(4) in the case of m = 2 and N = 1, describing the
obstacles to generalizing this analysis at the end. Due to the non-autonomous nature
of an evolving domain, there are different choices for defining a notion of a base state
in order to study linear instabilities (Van Gorder et al. 2021). Here, we use a natural
generalization of a homogeneous base state (u∗(t), μ∗(t)), which evolves as

dμ∗

dt
= S(t, u∗)μ∗, (16)

du∗

dt
= −S(t, u∗)u∗ + f (u∗), (17)

where we use f = ( f , g)T as a vector of reaction kinetics. As in Van Gorder et al.
(2021), we take u∗(0) to satisfy f (u∗(0)) = 0 to agreewith the linear stability analysis

123



Concentration-Dependent Domain... Page 9 of 28    14 

on static manifolds, and take μ∗(0) = 1. We perturb the system (1)-(4) by writing3

u = u∗(t) + εU∗(t, x) and μ = μ∗(t) + εν(t, x) for |ε| � 1. Substituting these into
(6)-(7) and retaining only terms up to order ε, we find that the perturbations satisfy

∂ν

∂t
= S(t, u∗)ν + (∇uS · U) , (18)

∂U
∂t

= D
(μ∗)2

∂2U
∂X2 − S(t, u∗)U − KU + JU, (19)

where we define

(∇uS)i = ∂S

∂ui
(t, u∗), Ki j = ∂S

∂u j
(t, u∗)u∗

i , Ji j = ∂ fi
∂u j

(u∗), i, j = 1, 2.

We note that (19) does not depend on ν, as terms involving ν will be multiplied
by gradients of u∗, which will vanish as these are spatially homogeneous. Hence,
linear perturbations in the manifold evolution do not play a role in the stability of
homogeneous equilibria. Therefore, we can neglect (18), and instead study just the
linear system (19) subject to the base states defined by (16)-(17). We can also see
that (17) does not depend on μ∗, so that we can directly solve (16) in terms of the
function u∗. If S does not depend explicitly on time t , we find that the base state of
the manifold, and its growth or contraction, is spatially uniform, in particular with the
base state of the concentrations evolving autonomously via Eq. (17).

This system can be solved via the method introduced in Van Gorder et al. (2021).
More directly, in Van Gorder (2020) the authors study linear systems of exactly the
form (19) if we define the linearized kinetics as M = J − K − S(t, u∗)I , where I
is the two-by-two identity matrix, and write μ∗(t) = exp(

∫ t
0 S(s, u∗(s)) ds). The key

insight is that the time-dependence of theLaplace–Beltrami operator canbe completely
factored out, so that one can take a Lagrangian decomposition of U :

U(t, X) =
∞∑

k=0

ψk(X)V k(t),
∂2ψk

∂X2 = ρkψk(X), (20)

where the constant spatial eigenvalues ρk = (kπ/L)2 correspond to the standard
Laplacian on an interval [0, L]with associated eigenfunctionsψk(X) = cos(kπx/L).
Perturbations then grow according to the non-autonomous ODE system

∂V k

∂t
= −ρk(μ

∗(t))−2DV k + M(t)V k . (21)

Theorem 2.1 of Van Gorder (2020) then gives a differential inequality that implies
linear instability of a given mode over an interval of time, which we state here in our
notation.

3 In fact, one can derive the base state system (17) by assuming that we are interested in perturbations of
this form and collecting the O(1) terms.
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Theorem 1 (Van Gorder 2020) Let Ik ⊂ [0,∞), and assume that M is not diagonal
for any t ∈ Ik . Then, the perturbations associated with the kth mode, V k , grow
exponentially if

det(M(t)) − D1M11(t) + D2M22(t)

(μ∗(t))2
ρk + D1D2

(μ∗(t))4
ρ2k

< max

{

M12(t)
d

dt

(
M11(t)(μ

∗(t))2 − D1ρk

M12(t)(μ∗(t))2

)

, M21(t)
d

dt

(
M22(t)(μ

∗(t))2 − D2ρk

M21(t)(μ∗(t))2

)}

(22)

is satisfied for all t ∈ Ik .

This criterion gives a local-in-time condition for perturbations to be linearly unsta-
ble. Of course, pattern formation requires such instabilities to grow to sufficient
amplitudes to be observable against the possibly complex behaviour of the spatially
uniform base state given by u∗(t). In particular, sufficiently rapid variations of u∗ in
time can prevent patterns from forming due to the interval of instability associated
with a particular mode, Ik , being too small. Typically when patterns do form, they
may stay within the linearly predicted regime but deviate from the maximally unstable
mode due to nonlinear effects such as peak splitting (Crampin et al. 1999; Ueda and
Nishiura 2012). We do note that a new term appears in our instability condition due
to concentration-dependence, namely K . One can show that, for sufficiently slow-
growth regimes, this instability criterion (and a stability condition for k = 0) reduce
to a quasi-static correction of the usual Turing conditions, which was computed in a
different manner by Madzvamuse et al. (2010).

Additionally, in the concentration-dependent setting, these linear stability results
are even more limited as they only hold for short times, when the growth is effectively
uniform. Local growth of the domain can lead to substantial differences from such
an assumption due to nonlinear effects (e.g. local dilution interacting with kinetics).
Finally, this analysis cannot be repeated for N > 1-dimensional domains, as was done
for coordinate-dilational growth in Van Gorder et al. (2021), because our constitutive
assumptions for the flow do not allow the eigenfunctions to be separable due to non-
uniformity in the growth even for constant S, as shown in Fig. 7.

4 One-Dimensional Numerical Results

We now explore the 1D model numerically, seeking to examine the impact of
concentration-dependent growth compared to explicitly pre-defined forms of growth
on the pattern-forming behaviour of classical reaction–diffusion models. In particu-
lar, the dilation rate S will be specified on a case by case basis below. Furthermore,
writing u = (u, v) and f = ( f , g), we will consider the Schnakenberg kinetics
(Schnakenberg 1979; Murray 2004):

f (u, v) = a − u + u2v, g(u, v) = b − u2v, (23)
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the Gierer–Meinhardt kinetics (Gierer and Meinhardt 1972):

f (u, v) = a − u2

v
− bu, g(u, v) = u2 − cv, (24)

and the FitzHugh–Nagumo kinetics (FitzHugh 1955; Nagumo et al. 1962):

f (u, v) = c

(
u − u3

3
+ v − i0

)
, g(u, v) = (a − u − bv)

c
. (25)

In all cases we consider positive parameters, i.e. a, b, c, i0 > 0.
We will also demonstrate the impact of concentration-dependent growth on the

dynamics of scalar reaction–diffusion models using the (nondimensionalized) logistic
(Fisher 1937; Murray 2007) and bistable (Chafee and Infante 1974; Keener 2021)
kinetics, respectively, given by

f (u) = u(1 − u), (26)

f (u) = u(1 − u2). (27)

We simulate (6)-(7) using a simple method-of-lines finite-difference scheme in
MATLAB. In particular, the diffusion term is discretized as,

1

μ

∂

∂X

(
1

μ

∂u

∂X

)
≈ 1

2μi

(
1

μi
(ui+1 + ui−1 − 2ui ) + 1

μi+1
(ui+1 − ui )

+ 1

μi−1
(ui−1 − ui )

)
, (28)

where ui and μi represent these variables at the i th grid point. The resulting system of
ODEs is integrated in time using the MATLAB function ode15s, which implements
a variable-step, variable-order solver (Shampine and Reichelt 1997). Relative and
absolute tolerances are taken to be 10−11 and, unless otherwise mentioned, Ns =
104 equispaced grid points are used. For the kinetics (23)-(25), initial data are taken
as a perturbation of the homogeneous steady state of the form u(0, x) = u∗(1 +
η(x)), v(0, x) = v∗(1 + ξ(x)), where η and ξ are independently and identically
normally distributed random variables with zero mean and variance 10−2. We note
that the kinetics (25) may have up to three homogeneous equilibria, but we only
consider parameters where there is one real equilibrium.

Due to the rapid (often exponential) separation of material points, each simulation
is broken up into several iterations where, at the end of one iteration, the final Eulerian
domain given by (8) becomes the new Lagrangian domain. This new computational
domain is then uniformly discretized, and μ is set to unity throughout the domain.
Interpolating the morphogen concentrations onto this new computational domain, this
overall procedure ensures relative uniformity of the mesh compared to a single fixed
Lagrangian domain. Numerical solution of the recast Lagrangian equations proceeds
until the next discrete epoch, at which point the computational domain is once again
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Fig. 1 (Color Figure Online) Values of u from 1D simulations of the logistic kinetics (26) under different
growth scenarios. In all simulations, the initial domain length is L = 30, with D1 = 1. The initial condition
is taken as u(0, x) = (1 + tanh(L/5 − x))/2, so that the leftmost 20% of the domain has the initial value
u ≈ 1 and the rest has the value u ≈ 0

redefined and remeshed. Here, we choose the iteration size in an ad hoc nature for
each considered example, though in principle one could utilize some metric of mesh
quality to adaptively select these lengths. Refinements of this iteration procedure had
no impact on any of the reported simulations. Maximum timestep controls and grid
point refinements were also used to check convergence in select simulations. Addition-
ally, a COMSOL LiveLink implementation was also implemented for the 1D model,
incorporating mesh refinement between iterations, using a comparable method to that
detailed in Sect. 5 for the two-dimensional simulations. These different numerical
methods gave quantitatively comparable solutions on sufficiently fine meshes. All
code and associated documentation can be found at Krause et al. (2022).

4.1 TravellingWaves in Diffusive Logistic Equations

To begin our exploration of concentration-dependent growth, we first consider the
scalar case of m = 1 and the logistic growth model given by the kinetics (26). This
model has been a paradigm of emergent travelling waves due to the interactions of
diffusion and nonlinearity; seeChapter 13 ofMurray (2007) for an overview of this and
related models. We save a detailed discussion of wave-type behaviour in these models
for future work, giving instead just three examples of how concentration-dependent
growth can change the structure of the typical constant-speed travellingwave observed
in this model.

We show these three examples in Fig. 1. For panel (a), we observe exponential
growth, though at an increasing rate as the region for which S(u) ≈ 0.005 grows
as the wave travels across the domain. After t ≈ 120 time units, the domain growth
saturates to a constant exponential rate. In contrast, panel (b) shows an example where
the region of positive growth decreases as thewave advances, eventually halting around
t ≈ 180. We remark that this solution is approaching (exponentially as u tends to 1)
a homogeneous equilibrium of the model on a fix domain size, where both u and μ

reach a fixed value in time. Finally, panel (c) gives the most exotic dynamics, where
the domain is contracting whenever u ≈ 1, and the domain is growing whenever
u ≈ 0. This leads to a transient period of growth as the wave moves, changing the
proportion of the domain that is growing, until growth ceases and the domain begins
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Fig. 2 (Color Figure Online) Values of u from 1D simulations of the Schnakenberg kinetics (23) under
different growth scenarios. In all simulations the initial domain length is L = 5, with a = 0.01, b = 1.1,
D1 = 1, and D2 = 40. In (d)–(i), we show u-dependent growth, whereas in (a)–(c) we show uniform
exponential domain growth. Timescales are set so that all domains grew to ≈ 670. Uniform growth rates
were used in (a)–(c) to match the corresponding domain lengths and timescales in (d)–(f), so that the final
simulation time and domain sizes are identical

contracting. Once the entire domain has approximately reached the u = 1 steady state,
it henceforth contracts at a fixed exponential rate.

There is a nontrivial impact of the growth on the apparent speed of the wave front,
which is consistentwith othermodels of uniformgrowth on travellingwaves (Landman
et al. 2003). One has to be careful in defining a wave speed in this case, in part due to
how one defines distances in evolving domains. This highlights one important feature
of choosing x = X = 0 as a fixed point in the Eulerian–Lagrangian mapping, as it
makes the rightmost point move the most, though in reality the domain growth and
contraction is occurring locally throughout the domain. We leave further exploration
of these ideas to future work and, instead, focus on pattern formation in the rest of the
paper. In all subsequent 1D figures, we will instead fix the midpoint of the domain in
our visualizations.
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Fig. 3 (Color Figure Online) Values of u as black curves and S as green curves at specific times from the
same simulations in Fig. 2. Row (a)–(c) corresponds to panel (a) in Fig. 2, Row (d)–(f) corresponds to
panel (c) in Fig. 2, row (g)–(i) corresponds to panel (f) in Fig. 2, and Row (j)–(l) corresponds to panel (i) in
Fig. 2. The first column is taken at 1/3 of the final simulation time, the second at 2/3 of the final simulation
time, and the last column at the final simulation time

4.2 Pattern Formation in Schnakenberg Systems

We give examples of growing domain simulations in Fig. 2 for the Schnakenberg
kinetics (23). Panels (a)–(c) are uniformly exponentially growing domains, whereas
those in (d)–(f) grow in a ‘thresholded’ manner (that is, regions of space grow approx-
imately where u > 1.2), and those in (g)–(i) grow at a rate proportional to u. The
panels are arranged so that the columns moving left to right show increasingly fast
growth timescales. Hence, the most drastic impacts of the different kinds of growth
can be observed in the last column, where we see in (c) that fast uniform growth has the
same qualitative character of peak splitting as for lower growth rates. In contrast, the
fast thresholded growth in (f) leads to large regions of u that are saturated just beyond
the growth threshold, as local dilution decreases the maximum value of u in the fastest
growing regions. Finally, in (i), we see that the very high growth rates in spikes can

123



Concentration-Dependent Domain... Page 15 of 28    14 

Fig. 4 (Color Figure Online) Values of u from 1D simulations of the Schnakenberg kinetics (23) under
different growth scenarios. In all simulations, the initial domain length is L = 10, except in (f) where
L = 5, with a = 0.01, b = 1.1, D1 = 1, and D2 = 40

lead to a complete breakdown of the more usual spike-doubling behaviour observed
at low growth rates, and the insertion of irregular spikes. This is consistent with such
behaviours observed for fast uniform growth, which has been described analytically in
Ueda and Nishiura (2012) (see also Kolokolnikov et al. (2006) for an alternative view
of the underlying mechanism behind such spike-doubling phenomena). However, for
the concentration-dependent cases, this deviation from spike-doubling is more pro-
nounced and leads to extremely irregular insertion events. One important observation
that was confirmed across many other simulations is that, for sufficiently small growth
rates, as long as S ≥ 0, similar spike-doubling behaviour was typically observed, as
seen here in the first column.

In Fig. 3, we plot particular profiles of u and S from the preceding simulations at
selected time points. As detailed in the caption, the first two rows correspond to the
slow and fast uniform growth rates, whereas the third row is the fastest thresholded
growth scenario, and the fourth is the fastest growth case with S ∝ u. The columns
are, from left to right, at increasing fractions of the total simulation time. While there
are some transient differences between uniform growth at different rates (compare
(b) with (e)), broadly the same spike-doubling behaviour is observed, and away from
insertion events the spikes maintain an approximately uniform spacing, as they do
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on fixed domains. In contrast, the thresholded growth shown in (g)–(i) initiates new
regions not by splitting sharp peaks, but by growing sharp valleys between plateaus
of high u concentration, with growth localized at the ends of these plateaus. The
profiles with S ∝ u are far more irregular throughout the simulation, with large spikes
appearing and moving away from regions where new but smaller spikes initiate. This
rapid movement of large spikes is a complex interplay of u and v having different
regions of localization (approximately out-of-phase), and the nonlinearity inherent in
the dilution term.

We now explore a scenario where both domain growth and contraction occur
simultaneously. In Fig. 4, we give examples where S = r(u − 1.3v) with r > 0
a constant. The factor of 1.3 present in S was chosen as the steady state values satisfy
u∗ − 1.3v∗ < 0, but integrating this expression for a patterned state generated on
a large fixed domain gave a positive net growth rate. Depending on the constant of
proportionality and initial domain length L , we observe exponential-like (though still
complex) growth for r ≤ 0.161 in (a)-(c), oscillations leading eventually to growth
for 0.162 ≤ r ≤ 0.163 in (d) and (e), oscillations or transient domain shrinking
leading eventually to a fixed domain size for 0.164 ≤ r ≤ 0.259 in (g) and (h), and,
finally, domain shrinkage for r ≥ 0.259 as in (i). Additional simulations within each
range of r values leads us to believe that, at least for a fixed initial condition and
domain size, these qualitatively different regimes can be tuned via the parameter r .
We did observe different dynamics for L = 5 where, for r = 0.163, we see sustained
oscillations in panel (f). We confirmed the predictions from panels (f)–(h) appear to
be genuine long-time behaviours by simulating these cases over timescales 20 times
longer and checking convergence in space and time steps. While these parameters are
intentionally chosen to demonstrate this wide variety of behaviour, similar kinds of
dynamics were observed for a range of choices of S(u). One important remark is that
while panels (g) and (h) show concentrations and domains approaching a fixed state,
the system does not truly reach an equilibrium as the domain will continue expanding
and contracting indefinitely. In other words, unlike panel (b) of Fig. 1, the value of μ

given by (7) never reaches an equilibrium.

4.3 Pattern Formation in Gierer–Meinhardt & FitzHugh–Nagumo Systems

We next consider examples of competing growth and contraction using the Gierer–
Meinhardt kinetics (24). As opposed to the preceding subsection, these kinetics have
the activatoru in phasewith the faster-diffusing inhibitor v, so that both species become
highly localized in the same spike regions, leading to localized regions of contraction
and growth within the domain near spikes. We choose the form S(u, v) = r(6v − u2)
for varying r > 0 so that overall there is a small net positive growth rate despite large
local contraction and growth. The particular choice of this functional form is partially
inspired by the form of g(u, v), but, as in the choice of the nonlinearity in Fig. 4,
is chosen primarily to illustrate some of the interesting phenomena that can occur in
combining growth and contraction.

We plot three examples of this growth in panels (a)–(c) of Fig. 5, with panels (d)–(f)
giving comparable uniform growth rates. The first thing to notice is that, locally, the
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Fig. 5 (Color Figure Online) Values of u from 1D simulations of the Gierer–Meinhardt kinetics (24) under
different growth scenarios. In all simulations the initial domain length is L = 10, with a = 0.01, b = 0.5,
c = 5.5, D1 = 1 and D2 = 200. The timescale and growth rates in (a)–(c) are chosen to match those in
(e)–(g) so that the final simulation time is on a domain of exactly the same size

domains in (a)–(c) are all growing linearly within the region where only a single spike
is stable, independently of the speed of the growth. Such a linear growth is an emergent
characteristic of the choice of S(u, v), with S not explicitly depending on time.Overall,
the profiles of the cases of uniform exponential growth and concentration-dependent
growth are remarkably similar. We also see that the spikes in (b) and (c) are at a much
higher amplitude, and are much more localized than in the other simulations. This
effect is due to local contraction, which is, in some sense, the opposite of the dilution
effect observed in Fig. 2(f) and leads to larger amplitudes over smaller regions.

Lastly, we consider the FitzHugh–Nagumo kinetics (25) in order to explore the
interplay of homogeneous oscillations and pattern formation in the concentration-
dependent setting. We give three examples of simple linear functions S(u) in Fig. 6,
though note that since u represents a voltage, it can be both positive and negative,
and so this results in local domain growth and contraction. For slow growth, panels
(a) and (d) show qualitatively similar behaviour, though note that (a) has changes
in growth rate as the number or position of spikes change as in Fig. 5(a)-(c). For
larger growth rates, however, we observe that the concentration-dependent case in
(b) undergoes a period of rapid homogeneous oscillations before undergoing pattern
formation, whereas the comparable uniform simulation in (e) has a shorter period of
longer oscillations before forming patterns. Finally, in (c) we see that for sufficiently
fast growth, rapid homogeneous decaying oscillations lead to periods of growth and
contraction (with an overall growing tendency), whereas in (f) we observe one period
of oscillation before the beginning of patterning takes places.

The interactions betweenhomogeneous oscillations, particularly those coming from
a Hopf bifurcation of the kinetics (25) are well-studied, e.g. see (Krause et al. 2019)
and the references therein. The important contrast between the uniform growth and
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Fig. 6 (Color Figure Online) Values of u from 1D simulations of the FitzHugh–Nagumo kinetics (25) under
different growth scenarios. In all simulations the initial domain length is L = 5, with a = 1.01, b = 1,
c = 1, i0 = 1, D1 = 1 and D2 = 2.5. The timescale and growth rates in (a)-(c) are chosen to match those
in (d)-(f), so that the final simulation time is on a domain of exactly the same size

concentration-dependent cases can be in part explained by considering the base state
given by (17). In particular, for all parameters in Fig. 6, there is a stable spiral steady
state of the kinetics located at (u∗, v∗) = (0, v∗) for some S-dependent v∗ > 0.
However for the linear choice of S in panels (a)-(c), this stable spiral has a much larger
imaginary eigenvalue, corresponding to higher frequency temporal oscillations, as
observed. In fact the concentration-dependent case also undergoes a Hopf bifurcation
case for slightly larger growth rates, leading to purely periodic growth and contraction
as in the early time shown in (c). Using the inequality in Theorem 1, we find that
panel (a) and the uniform growth cases in panels (d)-(f) all exhibit a growing range of
unstablewavemodeswith k = 0 stable,whereas panels (b) and (c) exhibit an increasing
range of unstable wavemodes including k = 0 so that the base state is itself unstable,
and whether or not a spatial pattern emerges is due to nonlinear competition between
modes. While the precise condition determining whether or not an inhomogeneous
perturbation leads to sustained amplitude patterns is not precisely determined by the
Conditions of Theorem 1 (this is determined by nonlinear mode competition), one can
gain insight into the impact of growth on the dynamics of the spatially homogeneous
state given by (17).

5 Two-Dimensional Simulations

Next we consider 2D simulations of concentration-dependent growth using the for-
mulation given in Sect. 2.2.We implemented Eqs. (1) and (9)-(15) in the finite-element
software COMSOL. The domain was discretized using second-order triangular finite
elements, with timestepping done via a generalized backwards-difference formula of
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Fig. 7 (Color Figure Online) Two examples of the growth of a boundary with the locally uniform expansion
rate S = 0.001. In (a) we start with a starfish-like domain given by equation (13) in Krause et al. (2021)
for γ = 0.8 and L = 1. In (b) we start with an Arbelos-like domain composed of the boundaries of three
semicircles of radius 1, 2/5, and 3/5, respectively, with some truncation done near the lower boundary to
prevent issues with extremely small finite elements. Boundary curves shown are arranged so that larger
enclosed areas correspond to later times, with times uniformly sampled

orders 1 to 5 with a tolerance set at 10−4. Initial steps within each iteration were
taken as 10−8, with a maximum step constraint taken as 1 or 0.1 to confirm accurate
resolution of the domain growth. As in the 1D case, each simulation was broken into a
number of shorter iterations using automated remeshing viaMATLAB LiveLink, with
concentrations interpolated onto a new Lagrangian domain at the end of each iteration.
In the 2D examples, we fixed themesh size parameters (maximal andminimal element
sizes, growth rates, etc.) so that domain growth tended to increase the number of ele-
ments used. Checks were carried out in the mesh size parameters, number of iterations
used, and maximum timesteps taken to ensure convergence for specific simulations.
All code and associated documentation can be found at Krause et al. (2022).

We begin by showing how the constitutive assumptions on the flow impact uni-
form growth rates where S is constant. Importantly, unlike in past work on uniformly
growing domains (Plaza et al. 2004; Krause et al. 2019; Van Gorder et al. 2021), a
locally uniform expansion of the domain does not lead to a uniform dilation given
our assumptions on the flow a corresponding to normal growth at the boundaries. We
give two examples of this in Fig. 7, where larger enclosed areas correspond to the
domain at later times. Here, we see that two highly non-convex domains both grow in
a manner where curvature is uniformized at the boundary. This is remarkably similar
to curve-shortening flows, which are well-studied in geometric analysis (Chou and
Zhu 2001) and are related to other kinds of manifold evolution, such as the famous
Ricci flow (Chow et al. 2006). It is also this quality, that uniform local growth does
not lead to isotropic dilation, that prevents the use of the linear stability analysis given
in Sect. 3 beyond 1D.
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Fig. 8 (Color Figure Online) Values of u from 2D simulations of the scalar bistable kinetics (27)
in the dumbbell-shaped domain given by (29) with the diffusion parameter D = 1 and growth rate
S = 0.000125(1 + tanh(50(u − 0.9)). Iterations are shown at times t = 0, 8, 2392, 3192, 4792, and
5272

Fig. 9 (Color Figure Online) Plots of the domain boundary from 2D simulations of the scalar bistable
kinetics (27) in the dumbbell-shaped domain given by (29) with the diffusion parameter D = 1. Panel
(a) corresponds to Fig. 8 with S = 0.000125(1 + tanh(50(u − 0.9)), and panel (b) to a simulation with
S = 0.000125(1+ tanh(50(|u| − 0.9)). Boundary curves shown are arranged so that larger enclosed areas
correspond to later times, with times uniformly sampled

5.1 Stable Inhomogeneous Solutions in Scalar Bistable Equations

We next consider a simple example of concentration-dependent growth for a scalar
reaction–diffusion equation, namely using the bistable kinetics (27). It is known that
scalar reaction–diffusion equations with Neumann data cannot admit stable inhomo-
geneous steady states on 1D or general convex domains (Casten and Holland 1978;
Matano 1979) and in fact this restriction of long-time behaviour even generalizes
to time-dependent semilinear reaction–advection–diffusion problems (Hess 1989). In
contrast, for non-convex domains bistable (or more generally multistable) kinetics
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can be used to make ‘locally’ stable regions separated by thin channels which are
inhomogeneous, and there is a range of literature exploring these kinds of structures
in many settings, for example (Matano 1979; Matano and Mimura 1983; Ward and
Stafford 1999).We explore a few simple scenarios of concentration-dependent domain
evolution to see what happens to such heterogeneous fronts.

We parameterize an initial dumbbell-like domain as,

x(s) = (s8 + 0.01)
√
1 − s8, y(s) = −(s8 + 0.01)

√
1 − s8, s ∈ [−1, 1], (29)

and take as an initial conditionu(0, x, y) = x , so that the concentrations approximately
equilibrate to the value of u = −1 in the left region and u = 1 in the right, with
some diffuse boundary in the thin channel between them and parts of lobular regions
near this channel. See Fig. 8(a) for this initial condition, which only changes slightly
from the quasi-static value 8 time units later in panel (b). In subsequent panels of
Fig. 8, we show domain growth that occurs where u is approximately greater than 0.9,
and hence is localized in the rightmost region of the domain. Eventually this region
grows so large that the small boundary to diffusion imposed by the thin channel is
insufficient to prevent this steady state from overcoming the u = −1 state, and the
entire domain approaches u = 1, as would happen on a convex domain. Given the
slow-growth timescale, we anticipate this destabilization of the inhomogeneous steady
state occurs when the geometry destabilizes the heterogeneous front. This boundary
could in principle be computed (Gokieli and Varchon 2005), but we do not do so here.

We also consider a growth function S where the domain grows for |u| > 0.9,
and compare this to the simulation in Fig. 8 by plotting the boundary of these two
cases in Fig. 9. In panel (a), S is positive during most of the simulation time only in
the rightmost region when u is near the value of 1. After the whole domain reaches
this value, as shown in Fig. 8(f), both regions and the (now quite small) intermediate
channel both grow. In contrast, the simulation in panel (b) of Fig. 9 never reaches a
uniform value of u, and both regions expand uniformly as shown but maintain the
values of u ≈ −1 on the left and u ≈ 1 on the right.

Intriguingly, if the growth is reversed so that the domain locally shrinks when
u > 0.9 (that is, we set S → −S from the simulation in Fig. 8), the rightmost
region shrinks slightly, but it eventually reaches a state where 0 < u < 0.9 and the
growth appears to halt asymptotically, due to diffusion across the thin channel reducing
the value of u in the rightmost region. At t = 120, 000, the maximal value of u is
approximately 0.836 and the overall contraction rate of the domain is substantially
smaller – the ratio of the integral of S at t = 8 divided by the integral of S at
t = 120, 000 is approximately 353, indicating substantially slower contraction at the
later time.

5.2 Concentration-Dependent Growth in 2D Gierer–Meinhardt Systems

Next we consider an example of growth in the Gierer–Meinhardt system given by
(1) and the kinetics (24). We choose parameters so that growth is localized at a peak,
and a sufficiently large diffusion ratio so that there is only one low-amplitude peak
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Fig. 10 (Color Figure Online) Values of u from 2D simulations of the Gierer–Meinhardt kinetics (24) in
an initially circular domain of radius 3. The parameters used are D1 = 1, D2 = 1000, a = 0.01, b = 0.5,
c = 5.5, with a growth rate of S = 0.001(1 + tanh(100(u − 22)). Iterations are shown at equally spaced
times with all panels using the same spatial scale

Fig. 11 (Color Figure Online) Values of u from 2D simulations of the Gierer–Meinhardt kinetics (24) in
an initially circular domain of radius 3. The parameters used are D1 = 1, D2 = 1000, a = 0.01, b = 0.5,
c = 5.5, with a growth rate of S = 0.001((u/u∗)2 − 1) = 0.001((u/11.02)2 − 1). Iterations are shown
at equally spaced times, with panels (d) and (e) being the same plot but resized so that panels (a)-(d) are
shown on the same scale and panels (e)-(h) are shown on the same scale

for a fixed circular domain. We use initial conditions as in the 1D setting of the form
u(0, x, y) = u∗(1 + η(x, y)), v(0, x, y) = v∗(1 + ξ(x, y)) where for each spatial
point (x, y), the random variables η and ξ are normally distributed with zero mean
and variance 10−2.

We show the evolution of the domain and concentration of u in Fig. 10. From panels
(a) and (b) we can see that there is initially growth at a particular point on the boundary
determined by where the localized spot initially forms. From the remaining panels we
can see that this spot curves around the domain, presumably following regions of high
local curvature as has been shown inGierer–Meinhardt systems on fixed domains (Iron
and Ward 2000). The interplay between local growth and curvature-based movement
leads to a spiralling motion of the spike around the original circular domain. We show
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Fig. 12 (Color Figure Online) Plots of the domain boundary from 2D simulations of the Gierer–Meinhardt
kinetics (24). Panel (a) corresponds to Fig. 10 and panel (b) to Fig. 11. Boundary curves shown are arranged
so that larger enclosed areas correspond to later times, with times uniformly sampled. In panel (b), later
boundary curves are to the left but do not enclose larger areas due to contraction towards the right side of
the domain

the boundary curves corresponding to this case in Fig. 12(a), where we see a strikingly
seashell-like pattern of growth.

Next we consider a case of domain growth and contraction. As before we consider
growth near the peak of the activator u, but assume the domain contracts away from
this peak.We show plots from this case in Fig. 11. The short time dynamics are similar
to the previous example, with a spot forming in one part of the domain and leading to
a local protrusion between panels (a) and (b). However panels (c) and (d) clearly show
that the domain is contracting away from the localized spot, leading to a fairly irregular
shape. Over longer timescales the spot continues to grow whereas the ‘tail’ region left
behind shrinks leading to the strange shape given in panel (h). Over longer timescales
a spot eventually forms in the bottom-right corner of panel (h), which then also begins
growing.We show a plot of the boundary curves in this case in Fig. 12(b), but note that
unlike all previous boundary curves in this paper, these involve intersections rather
than monotonically growing regions. These intersections correspond to contraction of
the domain with boundaries from earlier times.

6 Discussion

Primarily motivated by realistic coupling of domain evolution andmorphogen dynam-
ics in reaction–diffusion models of pattern formation, we have presented and explored
a class of such models on domains generated by concentration-dependent growth. As
one might expect, the possible dynamics in these cases can involve rich interactions
between the domain and the reaction–diffusion system, leading to intricate bifurca-
tion structures and captivating imagery, such as in the spiral of Fig. 12(a). Here we
overview some of the key insights of this study, and outline potential fruitful directions
for further work.
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Considering domain evolution as a local process which expands or contracts space
as defined by (3)-(4), there is essentially a unique 1D formulation of the model which
we gave in Sect. 2.1, and which was previously studied by Seirin Lee et al. (2011b).
Here we considered this framework in regimes of large growth, and also in regimes
of growth and contraction, highlighting complexity that can emerge due to the inter-
actions of both domain size and local dilution. In particular, we demonstrated that
while robust spike-doubling still typically occurs for sufficiently slow growth, fast
concentration-dependent evolution, or domain contraction, could lead to a variety of
unexpected phenomena. These include: modification of travelling-wave dynamics as
in Fig. 1; saturating plateaus of activator as in Fig. 2(f); bifurcations between growing,
oscillating, and shrinking domains as in Fig. 4; apparent locally-in-time linear growth
as in Fig. 5; and additional complexity of the background state, given in Equation (17),
as in Fig. 6. We also performed linear stability analysis of this 1Dmodel, emphasizing
that it can be useful as a heuristic but provides minimal insight in complex growth
regimes. Importantly, unlike in work by Van Gorder et al. (2021) and others, there
is no obvious extension of these linear stability results to higher-dimensional growth
for these kinds of local-growth models due to the nontrivial choice of constitutive
assumptions for N > 1.

In two and more dimensions, specifying the local dynamics of the domain is insuf-
ficient to prescribe the domain’s evolution in time. Here, we have posed irrotational
growth and no tangential movement along the boundary, which may be interpreted
as the flow being generated solely by point sources of density scaling with S and the
impact of the boundary constraint (Batchelor 1967).We demonstrated that this leads to
domains that reduce boundary curvature over time for constant uniform local-growth
rates in Fig. 7. In this 2D setting, we also demonstrated how even simple growth
dynamics can give rise to nontrivial domain restructuring in Fig. 10, and that growth
and contraction can lead to more exotic phenomena as in Fig. 11.

We anticipate that many more interesting phenomena can be found, or constructed
as in Woolley et al. (2021), and have made available an open source MATLAB code
that can rapidly simulate these systems in 1D (Krause et al. 2022), as well as a COM-
SOL LiveLink code in the 2D case. In the 1D setting especially, we anticipate that
the autonomous system given by (6)-(7) can be investigated directly using various
tools from nonlinear dynamics and the analysis of PDEs. If S does not depend explic-
itly on time, as in all of the simulations reported here, the system is autonomous
and in principle not much more complicated than many existing models of nonlinear
diffusion and non-diffusible morphogen systems. In principle tools such as shadow-
limits, spatial dynamics, and numerical continuation can all be applied to such a
system. The travelling-wave case studied briefly in Sect. 4.1 is one topic of current
further work, and highlights several nontrivial aspects of this autonomous yet com-
plicated concentration-dependence. In addition to past work on spike-splitting events,
mesa-splitting patterns like those seen in Figs. 3(h)-(i) and 6, have also been studied
analytically in the slow-growth regime (see Figure 1 and the analysis in Kolokolnikov
et al. (2007)).

While the 1D setting is interesting and plausibly tractable to various kinds ofmathe-
matical analyses, we also highlighted stark differences between both themodelling and
such analysis in 1D and models with higher spatial dimensions. These raise important
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questions regarding appropriate tissue-mechanical constitutive assumptions, which
can have nontrivial impacts on the dynamics in 2D and 3D models, and where any
mathematical analysis becomes substantially more complicated even if mechanical
deformations are essentially neglected, as in our simple constitutive model of the flow
a. Related to this, many of the important insights regarding growth, such as the cel-
ebrated spike-doubling robustness shown by Crampin et al. (1999), hold true in 1D
models but may not lead to robust patterning in higher-dimensional settings even in
slow-growth regimes. For example, 2D stripes can undergo breakup or zigzag insta-
bilities, plausibly ruining simple predictions of pattern-doubling (Kolokolnikov et al.
2006;Krause et al. 2019).Morework needs to be done in understandingwhich insights
from simple 1D models may be applicable to realistic tissue geometries, especially
for scenarios where morphogens influence the geometrical evolution of the domain.
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