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Canonical orbits for rapidly deforming planar microswimmers in shear flow
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Classically, the rotation of ellipsoids in shear Stokes flow is captured by Jeffery’s orbits.
Here we demonstrate that Jeffery’s orbits also describe high-frequency shape-deforming
swimmers moving in the plane of a shear flow, employing only basic properties of Stokes
flow and a multiple-scales asymptotic analysis. In doing so, we support the use of these
simple models for capturing shape-changing swimmer dynamics in studies of active matter
and highlight the ubiquity of ellipsoid-like dynamics in complex systems. This result is
robust to weakly confounding effects, such as distant boundaries, and also applies in the
low-frequency limit.
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In classical mechanics, it is well known that the rotational dynamics of rigid bodies can be
reduced to those of ellipsoids via the moment of inertia tensor. A similar correspondence holds
between rigid bodies and ellipsoids in Stokesian fluid dynamics, with the angular motion of a
broad class of particles in shear flow known to be equivalent simply to those of an ellipsoid.
In this zero-Reynolds-number setting, it is the celebrated work of Jeffery [1] that establishes
analytical solutions for the rotation of ellipsoids in shear flow, which has been explicitly linked
to the motion of a wide range of rigid bodies in subsequent generalizations [2–5]. However, looking
beyond rigid particles, it is unclear how far the scope of the so-called Jeffery’s orbit solution
extends. Recently, numerical studies have suggested that such a description may even apply to
complex shape-deforming microswimmers, including the well-studied spermatozoon [6,7]. These
small-scale swimmers are characterised by low-Reynolds-number mechanics and rapidly evolving
geometries, with the deformation of a slender flagellum canonically driving the motion of sper-
matozoa, for instance. Analogous relevant examples also include motile kinetoplastid pathogens,
such as Trypanosoma and Leishmania, as well as Volvox and artificial shape-deforming swim-
mers. Owing to the changing morphology of such swimmers, the methodology used to establish
links between ellipsoids and rigid bodies cannot simply be extended to include shape-deforming
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FIG. 1. Swimmer and laboratory frames. A generic swimmer with time-dependent boundary ∂� is shown
along with the basis {ex, ey, ez} of a swimmer-fixed frame. The swimmer frame is instantaneously at an angle
θ to the laboratory frame {eX , eY , eZ}, which corresponds to rotation about the shared ez = eZ axis in the eX eY

plane of swimmer motion.

swimmers; indeed, it is not even clear that a correspondence exists beyond select numerical
examples.

In addition to complementing numerical observations, establishing such a link has the potential
to further our fundamental understanding into the complex and well-studied dynamics of com-
monplace swimmers in background flows, which have been the subject of significant classical and
recent enquiry [6,8–12]. Further, in the wide context of the study of active biological matter, this
connection would afford rigorous theoretical justification to past and future uses of simple models
in approximating shape-changing swimmers in flow [7,13–19], potentially enabling analytical
progress in settings previously limited to numerical exploration.

In this Letter, we will seek to realize the above and establish the existence of a connection
between Jeffery’s orbits and the angular dynamics of rapidly deforming swimmers in the plane
of a shear flow. Our approach will employ classical results of Stokesian fluid mechanics coupled to
a multiple-scales asymptotic analysis, bypassing the details of the complex hydrodynamic problem
associated with shape-changing swimmers. Our key result, which we later extend, is captured in the
following proposition:

Proposition. Consider a lone drift-free swimmer at zero Reynolds number that moves in the
plane of a shear flow with shear rate γ , without roll or pitch, whose shape periodically evolves
with frequency ω � γ . Then, if there is no motion out of the plane of the shear flow, the average
rotational motion of the swimmer in an unbounded domain is given by a Jeffery’s orbit with relative
asymptotic error of O(γ /ω).

Proceeding more precisely, consider an isolated swimmer with boundary ∂� whose gait evolves
on the fast timescale T = ωt with period 2π , where ω � 1 and all quantities are dimensionless here
and hereafter. We assume that, in the absence of external flow, the gait of the swimmer contributes
no net change to its orientation over a period, a condition that we will later formulate explicitly.
We define a background shear flow ub = −γY eX in the fluid domain � that is parallel to the eX eY

plane of an inertial laboratory frame, with {eX , eY , eZ} being a right-handed orthonormal basis and
where γ is the dimensionless shear rate, assumed to be of order unity. Separately, we define a
swimmer-fixed frame with origin XO(T, t )eX + YO(T, t )eY in the laboratory frame and an associated
swimmer-fixed orthonormal basis {ex, ey, ez}, where ez ≡ eZ and ex = cos θeX + sin θeY is at an
angle θ (T, t ) from eX , as illustrated in Fig. 1. To facilitate a later multiple-scales asymptotic analysis,
we distinguish between functions of the fast gait timescale, T , and functions of the slow flow
timescale, t , writing these dependencies explicitly and distinctly throughout. Notably, the surface
∂� of the swimmer is a function only of the fast timescale T when viewed in the swimmer-fixed
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frame. In particular, a point p ∈ ∂� has position

xS (p, T ) = xS (p, T )ex + yS (p, T )ey + zS (p)ez

and velocity

US (p, T ) = ωxS
T = ω

(
xS

T ex + yS
T ey

)
,

both relative to the swimmer frame, using superscripts of S to denote quantities relating to the
swimmer surface. Here, subscripts of T denote partial differentiation with respect to T and we note
that zS

T is zero, given no motion out of the plane of the shear flow. The velocity of the shear flow in
the laboratory frame ub(p, T, t ) at a surface point p is then simply

ub(p, T, t ) = −γ

(
YO(T, t ) + xS (p, T ) sin θ + yS (p, T ) cos θ︸ ︷︷ ︸

eY ·xS (p,T )

)
eX .

The relative fluid velocity at p, denoted U r (p, T, t ), is then given by the difference between the
swimmer velocity in the laboratory frame and the background shear velocity. Defining x̃S = ez ∧
xS = −ySex + xSey and expressing the velocity of the origin of the swimmer frame relative to the
laboratory frame as u(T, t )ex + v(T, t )ey in the swimmer basis [20], the relative velocity at p is

U r (p, T, t ) = uex + vey + θ̇ez ∧ xS + US − ub

= uex + vey + θ̇ x̃S + ωxS
T + γ (YO + xS sin θ + yS cos θ )eX ,

where an overdot denotes a full derivative with respect to time, which we will later consider in the
context of a multiple scales analysis, and we have omitted arguments for brevity. As imposed, we
note that ez · U r = 0.

Applying the no-slip condition on the surface of the swimmer, U r becomes the surface velocity
of a Stokes problem in the domain �. Therefore, there exists a linear operator L(T ) such that
f = L(T )U r , where f = f (p, T, t ) is the instantaneous traction field on the boundary ∂� [21].
Subject to the removal of the pressure gauge freedom inherent in Stokes flows, which will have no
effect on this swimming problem, the traction is uniquely determined by the surface velocity and
the linear operator is, therefore, well defined. By the translational and rotational independence of
the Stokes equations, this operator is invariant to both translation and rotation, depending only on
the geometry of the domain and, therefore, only on the geometry of the swimmer, recalling that
our swimmer is moving in free space. In particular, if both f and U r are expressed in the swimmer
basis, then the action of L(T ) is readily seen to be independent of θ in this free-space swimming
problem, recalling that ∂� = ∂�(T ) in the swimmer-fixed frame. For brevity, we will suppress the
explicit dependence of the operator on T hereafter, writing L(T ) = L.

Next, we impose the force- and torque-free conditions appropriate to low-Reynolds-number
swimming, which we can succinctly write as

0 = 〈 f 〉 = 〈LU r〉,
0 = 〈xS ∧ f 〉 = 〈xS ∧ LU r〉,

taking moments about the origin of the swimmer frame and having defined

〈q〉 :=
∫∫

∂�

q dS∂�

to be the integral of the quantity q over ∂�. Note that we are free to resolve moments about
the origin of the swimmer frame owing to the force-free condition on the swimmer. Though the
above seemingly constitute six scalar equations, we note that the ez component of the force balance
and the ex and ey components of the moment balance will automatically be satisfied due to the
assumed planarity of the swimming motion. Thus, we may safely neglect these equations and,
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correspondingly, the ez components of the traction f , defining the projected operator L̂ to be the
result of applying L then projecting onto the exey plane, which we note inherits linearity and both
rotational and translational invariance within the shear plane from the properties of L. With this
projected operator, we have the reduced force- and torque-balance equations

0 = 〈L̂U r〉,
0 = ez · 〈xS ∧ L̂U r〉,

a system of three scalar equations. Before inserting our expression for U r into these conditions, it is
notationally convenient to define three matrices of vector-valued functions

M = (
L̂ex L̂ey

)
,

Wx = (
L̂xSex L̂xSey

)
,

Wy = (
L̂ySex L̂ySey

)
,

each a function of p and T and where a bar separates column vectors. For clarity, we remark that
L̂xSex denotes the application of the T -dependent operator L̂ to the field xSex, with other such terms
being interpreted analogously. The condition of force-free swimming can then be expanded as

0 = 〈(M|L̂x̃S )〉
⎛
⎝u

v

θ̇

⎞
⎠ + ω

〈
L̂xS

T

〉 + γ [YO〈M〉 + sin θ〈Wx〉 + cos θ〈Wy〉]
(

cos θ

− sin θ

)
, (1)

exploiting the linearity of both L̂ and the spatial integral operator 〈·〉.
The scalar moment balance equation can be written as

0 = ez · 〈xS ∧ LU r〉 = 〈x̃S · L̂U r〉
by the circular property of the scalar triple product [22]. Noting the similarity of this last expression
to the force balance equation, we once again exploit the linearity of the integral and hydrodynamic
operators and combine the expanded expressions for the force- and torque-free equations into a
single system:

0 =
〈(

M L̂x̃S

x̃S · M x̃S · L̂x̃S

)〉
︸ ︷︷ ︸

A(T )

⎛
⎝u

v

θ̇

⎞
⎠ + ω

〈(
L̂xS

T

x̃S · L̂xS
T

)〉

+ γ

[
YO

〈(
M

x̃S · M
)〉

+ sin θ

〈(
Wx

x̃S · Wx

)〉
+ cos θ

〈(
Wy

x̃S · Wy

)〉](
cos θ

− sin θ

)
. (2)

Here and throughout, we are defining a · b := a†b, where a† is the transpose of the vector a and b
is a vector or a matrix, a natural generalization of the usual dot product of vectors. The first term
of Eq. (2) represents the forces and torques generated by rigid body motion, while the second and
third terms encode the effects of the deformation and the background flow, respectively. Defining A
to be the T -dependent matrix operator that acts on the swimmer velocities, we note that A acts as
a resistance matrix and is invertible by standard energy conservation arguments [23]. Writing the
entries of A with respect to the swimmer basis, we also note that A is independent of the swimmer
orientation θ , a property that it inherits from L. Hence, A also depends only on the swimming gait
and is, therefore, a function purely of T .

Seeking a solution for θ̇ , we apply the inverse operator A−1 to Eq. (2) and define α = (0, 0, 1)A−1

to concisely take the third component of the resulting vector equation, giving

θ̇ = −ωα

〈(
L̂xS

T

x̃S · L̂xS
T

)〉
− γα

[
sin θ

〈(
Wx

x̃S · Wx

)〉
+ cos θ

〈(
Wy

x̃S · Wy

)〉](
cos θ

− sin θ

)
. (3)
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Notably, the YO term has been annihilated by the premultiplication by α. This follows from the
equality between the first two columns of A(T ) and the matrix coefficient of YO in Eq. (2), noting
that, for a general 3 × 3 invertible matrix with columns a, b, and c, we have

(a b c)−1(a b) =
⎛
⎝1 0

0 1
0 0

⎞
⎠

by the basic requirements of the inverse operator. Hence, the angular dynamics decouple from the
location of the swimmer frame relative to the origin of the shear flow.

Significantly, since xS , yS , and L̂ depend only on the fast timescale T , Eq. (3) for θ̇ depends
on t only through θ . Further, this θ dependence only arises through the terms sin θ cos θ , sin2 θ ,
and cos2 θ . Hence, by the double-angle formulas, we may write the governing equation for θ̇ in the
succinct form

θ̇ = γ [ξ (T ) − η(T ) cos (2θ ) − χ (T ) sin (2θ )] + ωg(T ), (4)

explicitly emphasizing that the term involving ω does not depend on θ or γ .
We now pursue a multiple-scales analysis [24], exploiting the assumed separation between the

fast timescale T = ωt and the timescale t of the shear-driven dynamics, with ω � 1 and γ = O(1).
Accordingly, the temporal derivative operator transforms as

d

dt
= ∂

∂t
+ ω

∂

∂T

and we expand θ in inverse powers of ω as

θ = θ0(T, t ) + 1

ω
θ1(T, t ) + O

(
1

ω2

)
. (5)

We also define

ā = 1

2π

∫ 2π

0
a(T ) dT

as the fast-timescale average of the quantity a, which we will make use of below, recalling that the
swimmer gait is assumed to be periodic with period 2π .

Using the asymptotic expansion of Eq. (5) in Eq. (4) and equating coefficients of ω, the leading-
order angular dynamics are simply

∂θ0

∂T
= g(T ) ⇒ θ0(T, t ) = θ̄0(t ) + G(T ),

where G(T ) is the antiderivative of g(T ). Our assumption of drift-free angular dynamics in the
absence of flow translates directly into ḡ = 0, which leads to G(T ) being periodic. Such dynamics
are known to be exhibited by all swimmers with antiperiodic swimming gaits, as defined and
discussed by Walker et al. [7, Appendix C], for example. With this assumption, we are free to
choose G(T ) to have zero fast-timescale average without loss of generality, so that the t dependence
of θ0 is precisely that of its temporal average θ̄0(t ). At next order, we have

∂θ0

∂t
+ ∂θ1

∂T
= γ [ξ (T ) − η(T ) cos (2θ0) − χ (T ) sin (2θ0)]

= γ

{
ξ − [η cos(2G) + χ sin (2G)]︸ ︷︷ ︸

α(T )

cos (2θ̄0) − [χ cos (2G) − η sin (2G)]︸ ︷︷ ︸
β(T )

sin (2θ̄0)

}
,

having suppressed the T dependence of ξ , η, χ , and G in the last expression for brevity. Imposing
that θ1 is T -periodic, as is standard in the method of multiple scales [24], we average over a period
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in T to obtain

d θ̄0

dt
= γ [ξ̄ − ᾱ cos (2θ̄0) − β̄ sin (2θ̄0)],

where ξ̄ , ᾱ, and β̄ are constants and we note the inherited periodicity of ξ , η, χ , and G in T . For
ξ̄ 
= 0, with γe := 2γ ξ̄ as the effective shear rate, this can be written as

d θ̄0

dt
= γe

2
[1 − B cos (2θ̄0 + 2θc)].

This simple ordinary differential equation is recognizable as that corresponding to a generalized
Jeffery’s orbit [2–5,7]. Hence, excluding the mathematically precise degenerate cases where γeB =
0, the average angular motion of the deforming swimmer is given by a Jeffery’s orbit at leading order
in 1/ω, thereby demonstrating the proposition. This orbit is characterized by an effective shear rate
γe, a phase shift θc, and a shape-capturing Bretherton constant B [2]. In particular, if |B| < 1, we
can identify this orbit with that of a simple spheroid in the effective shear flow.

A simplified constructive example. As our result above is largely nonconstructive, with explicit
expressions being prohibited by the generality of the operator L, its primary utility is in establishing
the broad validity of Jeffery’s orbit models for deforming swimmers in shear flow. However, subject
to simplifying assumptions and approximations, we can make explicit progress in a canonical
example. In particular, if our swimmer is a slender filament undergoing small-amplitude defor-
mations away from a straight configuration, we may make use of the classical resistive force theory
approximation of Gray and Hancock [25], acknowledging the associated error. In this case, the
operator L is significantly simplified to a purely local matrix operator L = −(2I − ex ⊗ ex ), where
I is the identity matrix and the dimensionless tangential resistive coefficient is unity, so that

f (p, T, t ) ≈ LU r (p, T, t ).

redefining f here to be the force per unit length on the filament, rather than the surface traction.
With the slender-body approximation also entailing that we need only consider the swimmer
centerline, we write xS = −pex + δh(p, T )ey, with dimensionless arclength parameter p ∈ [0, 2π ],
gait amplitude δ  1, and gait function h of order unity. A simple but notationally cumbersome
computation, given in the Supplemental Material [26] along with an extension to include an attached
sphere, yields the angular evolution equation

θ̇ = γ

2
[1 − cos (2θ )] + 3

2π3
ωδ

∫ 2π

0
(p − π )hT (p, T ) d p,

where the integral term corresponds to ωg(T ) in Eq. (4), with asymptotic corrections of O(γ δ),
O(ωδ2). Equations of this form are investigated in the detailed multiple-scales analysis of Walker
et al. [7], wherein it is indeed found that the leading-order average dynamics follow a Jeffery’s orbit
if ωδ � 1, in this case with unmodified shear rate γ and Bretherton constant B of magnitude less
than unity, along with a potential shift in definition of swimmer orientation.

Slowly drifting swimmers. In performing the multiple-scales analysis, we assumed that the
swimming gait introduces no net change in swimmer orientation over each period, which allowed us
to conclude that ḡ = 0. While this assumption holds in many swimming scenarios, some deforming
microswimmers can exhibit a relatively small angular drift over a period. For instance, the planar,
asymmetric beating of the bovine spermatozoa documented by Friedrich et al. rotates these swim-
mers by less than 9 ◦ each beat cycle even when tightly circling [27, Fig. 3], alongside analogous
qualitative reports from Woolley for a variety of species [28]. We investigate the effect of such a
small angular drift over a period in the Supplemental Material [26]. Once again, we recover the
angular evolution equation of generalized Jeffery’s orbits, highlighting the persistence of Jeffery’s
orbits across planar swimmers and swimming gaits.

Beyond free-space swimming. In reducing the general angular evolution equation to a form
readily amenable to asymptotic analysis, we have exploited the independence of the matrix A(T )
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from the position and rotation of the swimmer in the shear plane, an assumption inherited from
L that is valid in the case of swimming in free space in the plane of a shear flow. However, with
swimmers rarely isolated, often moving in the presence of boundaries or even other swimmers,
it is pertinent to consider the case where L might depend on other quantities, so that generically
L = L(T, t, XO,YO, θ, . . .). While it is clear that a generalized form of our conclusion will not
hold in all contexts, with boundary effects being of obvious importance for a swimmer very close
to a no-slip surface, for instance, we can recover a qualified generalization. In particular, noting
that the largest terms in the previous analysis are of O(ω), and that the previous analysis required
proceeding to O(1), our free-space result remains valid if we can write L = L0(T ) + o(1/ω),
where any additional dependencies of L are contained within the o(1/ω) terms. This condition
is equivalent to the notion that the leading-order hydrodynamic problem depends only on T , with
confounding factors such as the presence of boundaries and other swimmers contributing corrections
of magnitude less than 1/ω.

Reduction to slowly deforming or rigid bodies. Though we have focused on the motion of
rapidly deforming swimmers, Eq. (4) can be further analysed in two additional cases: slow swimmer
evolution, where ω  1, and a rigid body, where ω = 0 and T is simply constant. In the case of a
rigid body, Eq. (4) readily reduces to the form of a Jeffery’s orbit, noting that there is no gait and
that ξ , η, and χ are constants in this setting. Hence, as a corollary, we have also demonstrated
that arbitrary rigid bodies undergo Jeffery’s orbits, subject to the condition that they are symmetric
in the plane of the background shear flow. The case of slow swimmer evolution, where the body
deforms with frequency ω  1, is a simple regular perturbation of the ω = 0 case, and therefore
gives rise to a Jeffery’s orbit solution at O(1), with a natural long-time drift at O(ω). Hence, the
angular dynamics of a slowly deforming body that moves only in the plane of a shear flow are also
captured by a Jeffery’s orbit at leading order.

Summary and conclusions. Via simple properties of Stokesian hydrodynamics and a multiple-
scales analysis, we have shown that the dynamics of planar drift-free rapidly deforming swimmers
in shear flow are, on average and to leading order, given simply by the Jeffery’s orbits of rigid
particles. This result is precisely in line with previous numerical observations [6,7], and the assumed
planarity of motion and high-frequency gait are both common to many well-studied microswim-
mers, including some spermatozoa. We have further noted a robustness of this free-space analysis
to more-complex hydrodynamic environments and to slowly deforming or rigid bodies, with the
presented overall conclusion thereby justifying the judicious use of Jeffery’s orbit models for planar
swimming in shear flow.
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