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Fluid-structure simulations of slender inextensible filaments in a viscous fluid are
often plagued by numerical stiffness. Recent coarse-graining studies have reduced the
computational requirements of simulating such systems, though they have thus far been
limited to the motion of planar filaments. In this paper we extend such frameworks to
filament motion in three dimensions, identifying and circumventing coordinate-system
singularities introduced by filament parametrization via repeated changes of basis. The
resulting methodology enables efficient and rapid study of the motion of flexible filaments
in three dimensions, and is readily extensible to a wide range of problems, including
filament motion in confined geometries, large-scale active matter simulations, and the
motility of mammalian spermatozoa.
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I. INTRODUCTION

The coupled elasticity and hydrodynamics of flexible inextensible filaments on the microscale
are of significance to much of biology, biophysics, and soft matter physics. For example, many
organisms possess slender flagella or cilia, utilized for driving flows and even locomotion, while
investigation into the role of synthetic filaments as both soft deformable sensors and methods of
propulsion has been the subject of recent enquiry [1–9]. As a result, the complex mechanics of
fluid-structure interaction has been well studied, utilizing methods such as the slender body and
resistive force theories of Hancock [2], Gray and Hancock [10], Johnson [11], through to the
exact representations of boundary integral methods as used by Pozrikidis [6,7,12]. A fundamental
barrier to much numerical investigation has been the severe stiffness associated with the equations
of filament elasticity when coupled to viscous fluid dynamics. Hence, as remarked in the recent
and extensive review of du Roure et al. [13], an appropriate framework, capable of realizing
efficient simulation of filament elastohydrodynamics, is crucial for the numerical study of filament
mechanics.

Recently, significant progress has been made in resolving the dynamics of planar filaments,
with the work of Moreau et al. [14] presenting a coarse-grained model of filament elasticity that
overcame much of the stiffness previously associated with slender elastohydrodynamics. Key to
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this approach was the integration of the pointwise force and moment balance equations, the spatial
discretization of which yielded a relatively simple system of ordinary differential equations (ODEs)
to solve in order to describe filament motion. Additionally demonstrated to be flexible in the original
publication of Moreau et al., this framework has been extended to include nonlocal hydrodynamics
in both infinite and semi-infinite domains, and applied to a variety of single and multifilament
problems [15,16]. However, being confined to two dimensions limits the potential scope and
applicability of these approaches, with three-dimensional (3D) filament motion being readily and
frequently observed in a plethora of biophysical systems, such as the complex flagellar beating
found in spermatozoa or the helically driven monotrichous bacterium Escherichia coli [3,17].

However, for nonplanar filaments in three dimensions there is currently no methodology analo-
gous to that of Moreau et al., with state-of-the-art frameworks still plagued by extensive numerical
stiffness, necessitating costly computation to the extent that practical simulation studies have been
limited and parameter space explorations are largely prohibited. With three dimensions inherently
more challenging than lower dimensional settings, this field has seen developments such as the
recent work of Schoeller et al. [18], which utilizes a quarternion representation of filament orien-
tation to parametrize the three-dimensional shape of the slender body. However, in this framework,
numerical care is required to satisfy the inextensibility condition, with similar such consideration
necessary in the earlier methodologies of Olson et al. [19], Simons et al. [20], Ishimoto and
Gaffney [21], and Bouzarth et al. [22], each of which are equipped with nonlocal slender-body
hydrodynamics and consider nearly inextensible filaments. Consequently, these existing approaches
often require the use of sophisticated computing hardware in order to simulate filament motion, with
typical simulations of Ishimoto and Gaffney having a runtime of multiple hours on high performance
computing clusters. The recent work of Jabbarzadeh and Fu [23] compared and contrasted these
nearly inextensible approaches with a truly inextensible scheme, concluding that both accuracy and
efficiency were afforded by the latter in a range of biological and biophysical modeling scenarios.
Despite their improved efficiency, typical walltimes for these filament simulations are measured on
a timescale of hours on typical hardware. Thus, there remains significant scope for the development
of an efficient framework for the simulation of inextensible elastic filaments in three dimensions,
one in which filament dynamics can be rapidly computed on nonspecialized hardware on timescales
of seconds or minutes, thus facilitating a wealth of future studies and explorations into complex and
previously intractable biological and physical systems.

Hence, the fundamental objective of this paper is to develop and describe an efficient framework
for the numerical simulation of filament mechanics in three dimensions. We will build upon
the recent and significant work of Moreau et al. [14], extending their approach to include an
additional spatial dimension via a generalization of the Frenet triad and integration of the governing
equations of elasticity. We will overcome fundamental issues with simple single parametrizations
of a filament in three dimensions, presenting an effective computational approach utilizing adaptive
reparametrization and basis selection. We will then validate the presented framework by consid-
eration of three candidate test problems, simulating well-documented behaviors of filaments in a
viscous fluid and including a side-by-side comparison against the existing and recent methodology
of Ishimoto and Gaffney [21]. Finally, we will showcase the flexibility and general applicability of
the presented approach by describing and exemplifying a number of methodological extensions.

II. METHODS

A. Equations of elasticity

We consider a slender, inextensible, unshearable filament in a viscous Newtonian fluid, with its
centreline described by x(s), parametrized by arclength s ∈ [0, L] for dimensional filament length L.
We model the filament as a Kirchhoff rod with arclength-independent material parameters, circular
cross sections, and, in the first instance, no intrinsic curvature or intrinsic torsion. Both the filament
and fluid inertia are negligible for the physical scales associated with many applications, especially
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those associated with cellular flagella and cilia; hence there is no inertia here and throughout. Along
the filament we have the pointwise conditions of force and moment balance, given explicitly by

ns − f = 0, (1)

ms + xs × n − τ = 0, (2)

for contact force and torque denoted n, m, respectively, and where a subscript of s denotes differ-
entiation with respect to arclength. The quantity f is the force per unit length applied on the fluid
medium by the filament, which we will later express in terms of the filament velocity ẋ, where here
a dot denotes a time derivative. Similarly, τ is the torque per unit length applied on the fluid medium
by the filament. While any standard boundary condition may be considered in the formalism below,
throughout we impose zero force and torque at the filament ends so that

n(0) = n(L) = m(0) = m(L) = 0. (3)

In the Kirchhoff framework note that the contact force is not constitutive, but simply an undeter-
mined Lagrange multiplier for the intrinsic constraints of inextensibility and no shearing of the
filament cross section in any direction [24]. Thus we may eliminate n(s) at the earliest opportunity;
using the boundary condition n(L) = 0 and Eq. (1) we have

n(s) = −
∫ L

s
f (s̃) ds̃. (4)

This relation is also subject to the constraint that the boundary condition n(0) = 0 is satisfied,
generating a global force balance constraint for the applied force per unit length,

0 =
∫ L

0
f (s̃) ds̃, (5)

which we carry forward into the formalism below together with the elimination of n(s) via Eq. (4).
Thus, and as originally considered in Moreau et al. [14], integration of Eq. (2) and use of the
boundary condition m(L) = 0 reveals the integrated moment balance:

−
∫ L

s
{[x(s̃) − x(s)] × f (s̃) + τ(s̃)} ds̃ = m(s). (6)

Given a right-handed orthonormal director basis {d1(s), d2(s), d3(s)}, generalizing the Frenet triad
such that d3 corresponds to the local filament tangent, following Nizette and Goriely [25] we define
the twist vector κ by

∂dα

∂s
= κ × dα (7)

for α = 1, 2, 3. Writing κ = ∑
α καdα , for bending stiffness EI we use the Euler-Bernoulli consti-

tutive relation of the Kirchhoff formalism to relate the contact torque m and the twist vector κ [24],
via

m = EI

(
κ1d1 + κ2d2 + 1

1 + σ
κ3d3

)
, (8)

where σ is the Poisson ratio [25], assumed to be constant. With this constitutive relation the
integrated moment balance equations in the dα directions are simply

−dα (s) ·
∫ L

s
{[x(s̃) − x(s)] × f (s̃) + τ(s̃)} ds̃ = EI

1 + δα,3σ
κα (s), (9)

for α = 1, 2, 3 and where δa,b denotes the Kronecker delta.
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B. Filament discretization

In discretizing the filament we follow the approach of Walker et al. [16], as previously applied
to planar filaments and itself building upon the earlier work of Moreau et al. [14]. We approximate
the filament shape with N piecewise-linear segments, each of constant length �s, with segment
end points having positions denoted by x1, . . . , xN+1 and the constraints of inextensibility and
the absence of cross-section shear being satisfied inherently. The end points of the ith segment
correspond to xi and xi+1 for i = 1, . . . , N , with the local tangent d3 being constant on each segment
and denoted d i

3. In what follows we will consider a discretization of d1, d2 such that they are also
constant on each segment, and we denote these constants similarly as d i

1, d i
2. Writing si for the

constant arclength associated with each material point xi, we apply Eq. (9) at each of the si for
i = 1, . . . , N , splitting the integral at the segment end points to give

−d i
α ·

N∑
j=i

∫ s j+1

s j

{[x(s̃) − xi] × f (s̃) + τ(s̃)} ds̃ = EI

1 + δα,3σ
κα (si ), (10)

for α = 1, 2, 3. On the jth segment, x may be written as x(s) = x j + η(x j+1 − x j ), where η ∈ [0, 1]
is given by η = (s − s j )/�s. Additionally discretizing the force per unit length as a continuous
piecewise-linear function, with η as above we have f (s) = f j + η( f j+1 − f j ) on the segment,
where we write f j = f (s j ). Substitution of these parametrizations into Eq. (10) and subsequent
integration yields, after simplification,

−d i
α · (

I f
i + Iτ

i

) = EI

1 + δα,3σ
κα (si), (11)

where the integral contribution of the force and torque densities are denoted I f
i and Iτ

i , respectively.
With this discretization I f

i has reduced to

I f
i =

N∑
j=i

{[
�s

2
(x j − xi ) + �s2

6
d j

3

]
× f j +

[
�s

2
(x j − xi ) + �s2

3
d j

3

]
× f j+1

}
, (12)

in agreement with expressions for planar filaments found in Moreau et al. [14], Walker et al. [16]. As
we will highlight below, the contributions of the applied torque per unit length are relatively small
given the slenderness of the filament, motivating a less refined discretization for Iτ

i . Hence, taking
the piecewise constant discretization τ = τ j on the jth segment, we have the simple expression

Iτ
i =

N∑
j=i

�sτ j . (13)

From the above we see explicitly that the integral component of each moment balance equation may
be written as a linear operator acting on the f j and the τ j . Similarly, with this piecewise-linear force
discretization the integrated force balance of Eq. (1) simply reads

−�s

2

N∑
j=1

( f j + f j+1) = n(0). (14)

We write F = [ f1,x, f1,y, f1,z, . . . , fN+1,x, fN+1,y, fN+1,z]� for components f j,x, f j,y, f j,z of f j with
respect to some fixed laboratory frame with basis {ex, ey, ez}, and similarly T for the vector of
components of applied torque per unit length. Here and throughout, forces and torques are written
with respect to the laboratory reference frame. With this notation, we may write the equations of
force and moment balance as

−B
[

F
T

]
= R, (15)
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where B is a matrix of dimension (3N + 3) × (6N + 3) with rows Bk . For k = 1, 2, 3 the first
3N + 3 columns are given by

B1 = �s

2
[1, 0, 0, 2, 0, 0, 2 . . . , 2, 0, 0, 1, 0, 0],

B2 = �s

2
[0, 1, 0, 0, 2, 0, 0, 2 . . . , 2, 0, 0, 1, 0],

B3 = �s

2
[0, 0, 1, 0, 0, 2, 0, 0, 2 . . . , 2, 0, 0, 1], (16)

and correspond to the force balance of Eq. (14), with the remaining 3N columns zero. The remaining
rows of B encode the moment balance of Eq. (11) as expanded in Eq. (12), organized in triples such
that B3(i−1)+3+α projects the ith moment balance equation onto d i

α , in that this (3i + α)th row of B
captures the d i

α component of −(I f
i + Iτ

i ). The cross products inherited from Eq. (12) may now be
notationally simplified by use of the cyclic property of the scalar triple product, explicitly giving

d i
α · I f

i =
N∑

j=i

{
d i

α ·
[
�s

2
(x j − xi ) + �s2

6
d j

3

]
× f j + d i

α ·
[
�s

2
(x j − xi ) + �s2

3
d j

3

]
× f j+1

}

(17)

=
N∑
j=i

{
d i

α ×
[
�s

2
(x j − xi ) + �s2

6
d j

3

]
· f j + d i

α ×
[
�s

2
(x j − xi ) + �s2

3
d j

3

]
· f j+1

}
, (18)

with the latter expression readily transcribed as a linear operator acting on the f j for j = i, . . . , N .
Analogously, we have

d i
α · Iτ

i = �sd i
α ·

N∑
j=i

τ j, (19)

from which a linear operator acting on the τ j for j = i, . . . , N can be constructed. Accordingly, the
(3N + 3)-vector R is given by

R = EI

1 + δα,3σ
[0, 0, 0, κ1(s1), κ2(s1), κ3(s1), κ1(s2), . . . , κ3(sN )]�, (20)

so that the local moment balance is expressed relative to the local director basis. We remark that
each of the quantities involved in the construction of B and R are well defined for a general filament
in three dimensions, given the local directors d1 and d2 and computing the components of the twist
vector as κ1 = d3 · ∂sd2, κ2 = d1 · ∂sd3, and κ3 = d2 · ∂sd1. In terms of the discretized filament,
these arclength derivatives are approximated via finite differences in practice. Additionally, we will
proceed assuming that the filament is moment free at the base, which additionally enforces κ1(0) =
κ2(0) = κ3(0) = 0.

C. Coupling hydrodynamics

We now relate the force density f acting on the fluid to the velocity of each segment end point,
utilizing the commonly applied method of resistive force theory as introduced by Hancock [2] and
Gray and Hancock [10] and adopted by Moreau et al. [14] for planar filaments, incurring typical
errors logarithmic in the aspect ratio of the filament. Here taking the radius of the filament to be
ε = 10−2L, which more generally is assumed to be small in comparison to the filament length,
simple resistive force theory gives the leading order relation between filament velocity and force
density as

ft = −Ct ut , fn = −Cnun. (21)
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Here ft and fn denote the components of the force density tangential and normal to the filament,
with analogous definitions of ut and un. We will utilize the expressions of Gray and Hancock [10],
with

Ct = 2πμ

log(2L/ε) − 0.5
, Cn = 4πμ

log(2L/ε) − 0.5
, (22)

where μ is the medium viscosity, noting the relation Cn = 2Ct . We approximate the local filament
tangent at the segment end point xi as the average of d i−1

3 and d i
3 for i = 2, . . . , N , with the

tangent for i = 1 and N + 1 simply being taken as d1
3 and dN

3 , respectively. By linearity, and
again assuming a piecewise-linear force density along segments, we may write the coupling of
translational kinematics to hydrodynamics as

Ẋ = AF, (23)

where A is a square matrix of dimension 3(N + 1) × 3(N + 1) and is a function only of the segment
end points xi. Of dimension 3(N + 1), the vector Ẋ corresponds to the linear velocities of the
segment end points, and is constructed analogously to F with respect to the laboratory frame. This
relation results from the application of the no-slip condition at the segment end points, coupling the
filament to the surrounding fluid.

In order to relate the rate of rotation of each segment to the viscous torque τ i acting on it, we
here consider an approximation of the finite segment as an infinite rotating cylinder, associating
the torque per unit length on the ith segment with the rotation ωi about its local tangent d i

3 via the
relation of Chwang and Wu [26]:

τ i = 4πμε2ωid
i
3 (24)

and in particular the ε2 scaling entails that the torque per unit length contributions are relatively
small. Here we recall that μ is the viscosity of the fluid medium, and ε is the radius of the filament.
We may write this relation as a linear operator on ω = [ω1, . . . , ωN ]�, written simply as T = Ãω.
This crude approximation may readily be substituted for nonlocal hydrodynamics via the method
of regularized Stokeslet segments, which will likely be a topic of future work. Similarly, nonlocal
hydrodynamics may be utilized in place of Eq. (23), as used for two-dimensional (2D) filament
studies by Hall-McNair et al. [15] and Walker et al. [16], the latter incorporating a planar no-slip
boundary and still yielding an explicit linear relation analogous to Eq. (23).

Combining Eqs. (15), (23), and (24) yields the linear system

−B
[

A−1 0
0 Ã

][
Ẋ
ω

]
= −BA

[
Ẋ
ω

]
= R, (25)

where A is assumed to be invertible and A is defined to be a block matrix of dimension (6N + 3) ×
(4N + 3) with nonzero blocks A−1 and Ã.

D. Parametrization

We may parametrize the tangents d i
3 on each linear segment by the Euler angles θi ∈ [0, π ],

φi ∈ (−π, π ], ψi ∈ (−π, π ] for i = 1, . . . , N [24]. With this parametrization we may make a choice
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of d1 and d2, taking here the three orthonormal vectors to be

d i
1 = [−sφcψ − cθcφsψ,+cφcψ − cθ sφsψ, sθ sψ ]�, (26)

d i
2 = [+sφsψ − cθcφcψ,−cφsψ − cθ sφcψ, sθ cψ ]�, (27)

d i
3 = [sθcφ, sθ sφ, cθ ]�, (28)

written with respect to the laboratory frame and where sθ ≡ sin θi, cθ ≡ cos θi, and analogously for
sφ, cφ, sψ , and cψ . From the directors we recover

θi = arccos
(
d i

3 · ez
)
, φi = arctan

(
d i

3 · ey

d i
3 · ex

)
, ψi = arctan

(
d i

1 · ez

d i
2 · ez

)
. (29)

As the discretized filament is piecewise linear, for j = 1, . . . , N + 1 we may write

x j = x1 + �s
j−1∑
i=1

d i
3, ẋ j = ẋ1 + �s

j−1∑
i=1

ḋ
i
3. (30)

With d i
3 parametrized as above, we can thus express ẋ j as a linear combination of the derivatives

of θi and φi for i = 1, . . . , j − 1, in addition to including the time derivative of the base point x1.
Hence we may write

Q�̇ = Ẋ , (31)

� = [x1,x, x1,y, x1,z, θ1, . . . , θN , φ1, . . . , φN , ψ1, . . . , ψN ]�, (32)

where Q is a 3(N + 1) × 3(N + 1) matrix and x1,x, x1,y,x1,z are the components of x j in the basis
{ex, ey, ez}. Explicitly, Q may be constructed via

Q̃ =
⎡
⎣Q11 Q12 Q13

Q21 Q22 Q23 0
Q31 Q32 Q33

⎤
⎦, Q = [Q̃]P, (33)

where the matrices Qk1 are of dimension (N + 1) × 3, with Qk2 and Qk3 being of dimension (N +
1) × N , for k = 1, 2, 3. In the definition of Q, the subscript P denotes that the ith row of Q̃ is
permuted to the P(i)th row of Q, where

P(i) =
⎧⎨
⎩

3(i − 1) + 1, i = 1, . . . , N + 1,

3(i − N − 2) + 2, i = N + 2, . . . , 2N + 2,

3(i − 2N − 3) + 3, i = 2N + 3, . . . , 3N + 3.

(34)

This permutation of Q̃ allows us to define the sub-blocks simply, given explicitly as

Qi, j
k1 =

{
1, j = k,

0, otherwise, k = 1, 2, 3,

Qi, j
12 = �s

{+ cos θ j cos φ j, j < i,
0, j � i,

Qi, j
13 = �s

{− sin θ j sin φ j, j < i,
0, j � i,

Qi, j
22 = �s

{+ cos θ j sin φ j, j < i,
0, j � i,

Qi, j
23 = �s

{+ sin θ j cos φ j, j < i,
0, j � i,
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Qi, j
32 = �s

{− sin θ j, j < i,
0, j � i,

Qi, j
33 = 0.

Further, in this parametrization we may readily relate the local rate of rotation about d i
3,

denoted ωi as in Eq. (24), to θ, φ,ψ and their time derivatives. Explicitly, this relationship is
ω = cos(θ )φ̇ + ψ̇ , and is notably linear in the derivatives of the Euler angles. Thus, we form the
composite matrix

Q =
[

Q
0 C IN

]
, (35)

where IN is the N × N identity matrix and the N × N matrix C has diagonal elements Ci = cos(θi )
for i = 1, . . . , N , with all other elements zero. The upper block, Q, maps the parametrization into
the laboratory frame, while the lower blocks convert between the parametrization and the local rate
of rotation about d3 as written in director basis. The (4N + 3) × 3(N + 1) matrix Q now encodes
the expressions of velocities and rotation rates in terms of the parametrization, via

Q�̇ =
[

Ẋ
ω

]
, (36)

noting that the representation of ω is relative to the director basis, while the representation of Ẋ is
relative to the basis of the laboratory frame.

Having constructed Q, we now combine Eqs. (25) and (36) to give

−BAQ�̇ = R, (37)

noting in particular that the matrix BAQ is square and of dimension (3N + 3) × (3N + 3). Naively,
this system of ordinary differential equations can be readily solved numerically to give the evolution
of the filament in the surrounding fluid. However, the use of a single parametrization to describe the
filament will in general lead to degeneracy of the linear system and ill-defined derivatives in both
space and time, issues which we explore and resolve numerically in the subsequent sections.

E. Coordinate singularities

Consider a straight filament aligned with the ez axis, with each of the d i
3 = [0, 0, 1]� written

in the laboratory frame. For this filament θi = 0 for all i, while the φi are undetermined, arbitrary,
and notably need not be the same on each segment. Were we to attempt to formulate and solve the
linear system of Eq. (37), both φ and its derivatives would be ill defined, and correspondingly we
would be unable to solve the system for the filament dynamics, which are physically trivial in this
particular setup. In more generality, if a filament were to have any segment pass through one of the
poles θ = {0, π} of this coordinate system, φ would be undetermined on the segment and arbitrary,
with attempts to solve our parametrized system of ordinary differential equations failing. Further,
were a segment to pass close to but not through a pole, time derivatives of φ would necessarily
become large, with φ well defined but varyingly rapidly as the segment moves close to the pole
of the coordinate system. These large derivatives would artificially introduce additional stiffness
to the elastohydrodynamical problem, inherent only to the parametrization and not the underlying
physics. This problem is well known for Euler angle parametrizations, and is commonly referred
to as the “gimbal lock.” Analogous issues with arclength derivatives occur when considering
neighboring segments, with the value of φ varying rapidly and artificially between segments that
reside near the pole of the coordinate system. In this latter case, however, our formulation of the
elastohydrodynamical problem circumvents the need for evaluation of φs, instead considering only
derivatives of the smooth quantities dα , though we are not able to resolve issues with temporal
derivatives in the same way.
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In order to avoid the numerical and theoretical problems associated with singular points in the
filament parametrization, we exploit the finiteness of the set of angles θi along with the independence
of the underlying elastohydrodynamical problem from the parametrization. Throughout this paper
we have assumed a fixed laboratory frame with basis {ex, ey, ez}, present only so that vector
quantities may be written componentwise for convenience. Our choice of such a basis is arbitrary,
with the physical problem of filament motion being independent of our selection of particular basis
vectors. It is with respect to this basis that we have defined the Euler angles θ, φ,ψ , from which
the aforementioned coordinate singularities appear if any of the θi approach zero or π . Thus, if
one makes a choice of basis {e�

x, e�
y, e�

z} such that the corresponding Euler angles θ�
i are some δ

neighborhood away from the poles of the new parametrization, the system of ordinary differential
equations given in Eq. (37) may be readily solved, at least initially. Should the solution in the new
coordinate system approach one of the new poles θ� = 0, π , a new basis can again be chosen, and
this process iterated until the filament motion has been captured over a desired interval.

We note that for sufficiently small δ > 0 such a choice of basis {e�
x, e�

y, e�
z} necessarily exists

due to the finiteness of the set of θi, with δ in practice able to be sufficiently large so as to limit
the effects of coordinate singularities. Thus, subject to reasonable assumptions of smoothness of
the filament position x, such a process of repeatedly changing basis when necessary will prevent
issues associated with the parametrization described above, and will in practice enable the efficient
simulation of filament motion without introducing significant artificial stiffness or singularities.

III. IMPLEMENTATION, VERIFICATION, AND EXTENSIONS

A. Selecting a new basis

Initially choosing an arbitrary laboratory basis {ex, ey, ez}, the above formulation is implemented
in MATLAB, with the system of ODEs of Eq. (37) being solved using the inbuilt stiff ODE solver
ODE15S, as described in detail by Shampine and Reichelt [27]. This standard variable-step, variable-
order solver allows for configurable error tolerances, typically set here at 10−5 for absolute error and
10−4 for relative error, in general significantly below the error associated with the piecewise-linear
filament discretization. Derivatives with respect to arclength are approximated with fourth order
finite differences, with the resulting dynamics insensitive to this choice of scheme. Initially and
at each time step, the values of θi are checked to determine if they are within δ of a coordinate
singularity, typically with δ = π/50. Should the parametrization be approaching a singularity, a
new basis is chosen and the problem recast in this basis.

A natural method of selecting a new basis is perhaps to choose one uniformly at random. Indeed,
by considering the worst-case scenario of the N tuples (θi, φi ) uniformly and disjointly covering
the surface of the unit sphere, which together θ and φ parametrize, the probability that any random
basis results in a scenario with mini {θi, π − θi} < δ is given by 2N sin2(δ/2), a consequence of
elementary geometry. With this quantity being significantly less than unity for a wide range of N
with δ large enough to avoid severe artificial numerical stiffness, as discussed above, a practical
implementation for the simulation of filament elastohydrodynamics as formulated above may
simply select a new basis randomly, repeating until a suitable basis is found. With δ = π/50 and
N = 50, the probability of rejecting a candidate new basis is bounded above by 10%, thus in practice
one should expect to find an appropriate basis within few iterations of the proposed procedure.

Alternatively, and as we will do throughout this paper, one may instead proceed in a deterministic
manner, selecting a near-optimal basis from knowledge of the existing parametrization. Given the set
of parameters θi and φi, we may choose a θ̂ ∈ [0, π ] and φ̂ ∈ [0, 2π ) so as to maximize the distance
of (θ̂ , φ̂) from each of the (θi, φi ) and their antipodes. In practice, an approximate solution to this
problem is attained by selecting (θ̂ , φ̂) from a selection of preset test points in order to maximize
the distance from the (θi, φi ), where distance is measured on the surface of the unit sphere that θ and
φ naturally parametrize, as shown in Fig. 1. It should be noted that this process of selection impacts
negligibly on computational efficiency with 10 000 test points. With these choices of θ̂ and φ̂, we
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FIG. 1. An example choice of a new parametrization in order to avoid coordinate singularities. Shown
in blue are the points on the unit sphere corresponding to (θi, φi ), with their antipodes displayed in yellow.
(a) Before a change of basis and subsequent reparametrization, we see that these points are located near to
the θ = 0 and π axes, which are shown as black vertical lines. A new potential location for the θ = 0 axis is
shown in orange, selected so as to maximize the distance from the (θi, φi ) and their antipodes. (b) Following
reparametrization, the points and antipodes are located maximally away from the new axis. This example
scenario corresponds to a helical filament initially with θi = π/6 for i = 1, . . . , 50.

form a new basis by mapping the original basis vector ez to the vector e�
z , given explicitly by

e�
z = [sin θ̂ cos φ̂, sin θ̂ sin φ̂, cos θ̂ ]�. (38)

Choosing the other members of the orthonormal basis e�
x, e�

y arbitrarily, expressed in this new basis
the accompanying filament parametrization will be removed from any coordinate singularities by
construction, as exemplified in Fig. 1(b).

B. Validation

In what follows we validate the presented methodology against known filament behaviors and
a sample three-dimensional simulation with an existing methodology. Initial configurations and
parameter values for each can be found in the appendix, with behaviors qualitatively independent of
these parameter choices and filament setups.

1. Relaxation of a planar filament

Noting that there is no analytical test solution for the dynamics of a fully 3D Kirchhoff rod
in a viscous fluid, to the best of our knowledge, we consider validations by comparison with
numerical studies in the literature, though we additionally utilize invariance of the center of mass as
a gold standard below, where applicable. First, we validate the presented approach by considering
the problem of filament relaxation in two dimensions, a natural and well-studied subset of the
three-dimensional framework. We consider the simple case of a symmetric curved filament in the
exey plane, which will provide a test of symmetry preservation, integrated moment balance, and
hydrodynamics via qualitative comparisons with the earlier works of Moreau et al. [14] and Hall-
McNair et al. [15]. Simulating the relaxation of such a filament to a straight equilibrium condition
with N = 40 segments takes less than 2 s on modest hardware (Intel Core i7-6920HQ CPU), from
which we immediately see retained the computational efficiency of the framework of Moreau et al.
that this paper generalizes. Present throughout the computed motion is the left-right symmetry of the

123103-10



EFFICIENT SIMULATION OF FILAMENT …

(a) (b)

FIG. 2. The two-dimensional relaxation of a symmetric planar filament, simulated with N = 40 segments.
(a) Symmetry is preserved throughout the dynamics, with the relaxation in qualitative agreement with that used
for verification in the two-dimensional works of Moreau et al. [14], Hall-McNair et al. [15], Walker et al. [16].
(b) Translation of the center of mass throughout the motion, analytically zero, is captured numerically with
errors on the order of 10−3L by the proposed methodology, notably the same order of magnitude as that attained
with the two-dimensional methodology of Walker et al. [16]. Axes xx and xy correspond to the unit vectors ex

and ey, respectively.

initial condition, with the filament shape evolving smoothly even with a small number of segments,
as shown in Fig. 2. Further, the center of mass, which in exact calculation would be fixed in space
due to the overall force-free condition on the filament, is captured numerically with errors on the
order of 10−3L, demonstrating very good quantitative satisfaction of this condition. Of note, in
Fig. 2(b) we have verified that this error is of the same order of magnitude as that generated by the
two-dimensional methodology of Walker et al. [16].

2. Planar bending of a filament in shear flow

Further, while the above is reassuring and serves to validate a subset of the implementation,
we note from Eqs. (26) and (27) that motion cast in the exey plane of the laboratory frame may
often render the evolution of one of the directors d1, d2 trivial. In order to avoid this we may
consider planar problems in slightly more generality, posing a problem that is planar though not
aligned with the exey plane. As an exemplar such problem we attempt to recreate a typical but
complex behavior of a flexible filament in a shear flow, that of the J shape and U turn [28],
aligning both the filament and the background flow in a plane spanned by ey and ex + ez. In
order to ensure the absence of alignment of the parametrization with the exey plane, we disable
the adaptive system of basis selection for the purpose of this example, and simulate the motion of
a filament in a shear flow. The background flow with velocity ub and vorticity � is incorporated
into the framework via the transformation u �→ u − ub, ωi �→ ωi − � · d i

3/2, yielding the modified
system

−BAQ�̇ = R − BAUb (39)

for a vector Ûb of background flows and vorticities evaluated at segment end points and midpoints,
respectively. Details of the flow field and initial setup are given in the appendix.

Adopting the timescale T to be the inverse of the shearing rate of the flow, we consider a
parameter regime in which one would expect to see formation of J shape and subsequently a U
turn, defined by their characteristic morphologies in Liu et al. (see Fig. 1 and Movies S5 and S6
in [28]) and from which an appropriate parameter choice is obtained. Notably, the impact of thermal
noise perturbations is not considered here, in contrast to Liu et al. [28], preventing a quantitative
comparison. In Fig. 3 we present the initial, J-shape, and U-turn configurations of the filament
as simulated via the proposed methodology, with computation requiring approximately 20 s with
N = 50 segments. The simulated filament shapes are in qualitative agreement with those shown in
Liu et al. (see Fig. 1 in [28]), and serve as further validation of the coarse-grained methodology.
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(a) (b) (c)

FIG. 3. The planar evolution of a filament in shear, exhibiting a rich and well-documented dynamics.
(a) Having aligned both the filament and shear flow in a plane not parallel to the exey plane, with the directors
nontrivial in this setup, we simulate the motion of the filament through two distinct morphological transitions:
(b) the characteristic J shape and (c) the subsequent U turn (see Fig. 1 and Movies S5 and S6 in Liu et al. [28]).
We note that the choosing of an improved basis for computation has been disabled for this example, and yields a
twofold increase in computational efficiency if enabled. Arrows indicate the direction of the background shear
flow. Axes xx, xy, xz correspond to the unit vectors ex, ey, ez, respectively. The plane containing the filament
and the shear flow is shown in gray.

Notably, enabling the described method of basis selection effectively casts this problem in the exey

plane, affording a twofold increase in computational efficiency and highlighting the benefits of
adaptive reparametrization.

3. Relaxation of a nonplanar filament

Finally, we consider truly nonplanar relaxation of filaments in three dimensions. Typical sim-
ulations of such a relaxation with N = 50 segments have a runtime of approximately 10 s on the
modest hardware described above, often requiring at most one choice of basis though naturally
problem dependent, and provide reasonable accuracy. Thus, even when considering inherently
three-dimensional problems we see retained in this methodology the low computational cost of
the formulation of Moreau et al. [14], representing significant improvements in computational
efficiency over recent studies in three dimensions [19–21]. This is particularly evident when directly
comparing the presented coarse-grained methodology with the results of Ishimoto and Gaffney [21],
considering in this case the relaxation of a helical configuration to a straight equilibrium. A
side-by-side comparison of the relaxation dynamics as computed by the proposed methodology
and that presented in Ishimoto and Gaffney is shown in Fig. 4, noting that the work of Ishimoto
and Gaffney [21] considers an actively driven nearly inextensible filament, of which relaxation
dynamics are a natural subset. Figure 4 highlights good agreement between methodologies that is
in line with the level of accuracy typically afforded by resistive force theories used here, recalling
errors logarithmic in the filament aspect ratio. Figure 4(e) shows a quantitative evaluation of the
computed solutions, with the deviation of the filament center of mass from the initial condition
shown as solid black curves for each methodology. With the force-free condition implying that
the filament center of mass should not move throughout the relaxation dynamics, this measured
deviation serves as an assessment of the accuracy of both frameworks, with each exhibiting variation
only on the order of 10−2L. Also shown in Fig. 4(e) is a dimensional measure of the difference
between the two computed solutions, here denoted E (t ) and defined as the non-negative root
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(a) (b) (e)

(c) (d)

FIG. 4. The relaxation of a filament in three dimensions. Shown are the results of simulating this motion
via (a,b) the proposed framework and (c,d) the methodology presented in Ishimoto and Gaffney [21], in turn
heavily based on the work of Olson et al. [19], shown from multiple perspectives at multiple time points. In both
cases we observe relaxation from a nonplanar, helical configuration to a straight filament, and good agreement
between the two computed solutions, in particular given the logarithmic accuracy of resistive force theories.
(e) A quantitative comparison between the two frameworks, with solid lines showing the Euclidean distance of
the filament center of mass from its initial location, analytically zero by the force-free condition though here
on the order of 10−2L. The dashed curve quantifies the error between the computed solutions, denoted E , with
the square of this error defined as E 2 = ∫ ||xP − xIG||22 ds/L, where xP and xIG are the locations of the filament
centerline as computed by the proposed methodology and that used by Ishimoto and Gaffney, respectively.
Computation with the presented methodology took approximately 30 s on a modest laptop computer, in
comparison to the multiple hours required on sophisticated cluster hardware for the methodology of Ishimoto
and Gaffney. Here we have simulated filament motion with N = 100 segments. Axes xx, xy, xz correspond to
the unit vectors ex, ey, ez, respectively.

of

E2(t ) = 1

L

∫ L

0
||xP(s, t ) − xIG(s, t )||22 ds, (40)

where xP(s, t ) and xIG(s, t ) denote the filament centreline as computed by the proposed methodol-
ogy and that used by Ishimoto and Gaffney, respectively. Numerically approximating this integral
with quadrature and noting that this error is consistently on the order of 10−2L throughout the relax-
ation, we see evidenced good quantitative agreement between the two frameworks, thus validating
the proposed methodology. We also remark that the solution of Ishimoto and Gaffney [21] does not
perfectly satisfy filament inextensibility, with variation in total length of approximately 1%, which
may have some impact on the computed dynamics. Thus, when computing E (t ) as defined above, we
treat s ∈ [0, L] as a material parameter, with the differences in position xP(s, t ) − xIG(s, t ) therefore
capturing discrepancies between the simulated locations of the material point with undeformed
arclength s at time t , with s not necessarily equal to the deformed arclength in the solution of
Ishimoto and Gaffney [21].

In contrast to the agreement between solutions, there is a stark difference between the associated
time required for computation. Taking N = 100 segments and computing until relaxation, the
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FIG. 5. Walltimes associated with the 3D filament relaxation of Fig. 4 for various choices of the parameters
ε and N . With N = 200 corresponding to a very fine discretization of the filament, we observe a maximum
walltime of under 6 min on a modest laptop computer, approximately 25x faster than the similar computations
of Ishimoto and Gaffney [21] on sophisticated cluster hardware, albeit for different parameter values. There
is a strong dependence of the walltime on the level of discretization, N , as expected. Here, the absolute and
relative error tolerances of the ODE solver are set to 10−5 and 10−4, respectively. All axes, including the color
axis, are logarithmically scaled for visual clarity. For reference, the parameter combination signified by a cross
corresponds to a walltime of 2.5 s, with N = 63 and ε/L ≈ 3.2 × 10−3.

coarse-grained framework calculated the solution in approximately 30 s on personal computing
hardware with ODE error tolerances of 10−5, while the computations utilizing the implementation
of Ishimoto and Gaffney required 2.5 h on a high performance computing cluster. A thorough
investigation of the time required for computation with the presented methodology for various
choices of the parameters ε and N is showcased in Fig. 5, from which we note the remarkable
performance of this simple implementation across parameter regimes, with the walltime naturally
dependent on the discretization parameter N .

C. Model extensions

1. Intrinsic curvature

In order to showcase the versatility of the presented framework, we demonstrate its simple
extension to filaments with nonzero intrinsic or reference curvature, which can exhibit complex
buckling behaviors [29]. Recalling the constitutive relation of Eq. (8), the effect of an intrinsic
curvature κ0 is to alter the bending moments, yielding the modified constitutive relation

m = EI

([
κ1 − κ0

1

]
d1 + [

κ2 − κ0
2

]
d2 + 1

1 + σ

[
κ3 − κ0

3

]
d3

)
, (41)

where we have written κ0 = ∑
α κ0

αdα in the local director basis. Notably, the reference curvature
can plausibly depend on a variety of quantities, including time, arclength, and spatial position,
with an example being the modeling of an internally driven filament by a time-dependent intrinsic
curvature [18,19].

Practically, the inclusion of such an intrinsic curvature amounts to a simple subtraction of the
reference curvature from the computed components of κ at each instant, with R as given in Eq. (20)
being modified accordingly. Doing so, we simulate the relaxation of a straight filament with a
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FIG. 6. The relaxation of a straight filament with nonzero intrinsic curvature to a helical configuration,
with reference curvature specified as κ0 = πd2 + 2πd3. Having taken N = 70 segments and ε = 10−2L, we
observe the smooth relaxation of the filament away from its initial straight configuration, computed in 15 s on
a modest laptop computer. Axes xx, xy, xz correspond to the unit vectors ex, ey, ez, respectively.

nonzero intrinsic curvature, with the reference curvature explicitly given by κ0 = πd2 + 2πd3

corresponding to a helical configuration. As shown in Fig. 6, the filament indeed relaxes to a helix,
with the walltime of this simulation being 15 s on a laptop computer, having taken ε = 10−2L
and N = 70 segments, noting that the filament shape has been sufficiently resolved with this
discretization.

2. Clamped and internally driven filaments

Finally, we consider the simple extensions to both clamped filaments and to those with actively
generated internal moments, the latter being akin to the active beating of biological cilia and
flagella [30]. For time and arclength-dependent active moment density ma, its inclusion into the
presented framework acts to modify the moment balance of Eq. (2) to

ms + xs × n − τ + ma = 0. (42)

Repeating the integration of the pointwise moment balance from s = si to L as in Sec. II leads to a
modified form of Eq. (11), explicitly given as

−d i
α · (

I f
i + Iτ

i

) = EI

1 + δα,3σ
κα (si ) − d i

α · Ia
i , (43)

where the integrated active moment density is written as

Ia
i =

∫ L

si

ma ds̃. (44)

For a given active moment density, assumed to be integrable, Ia
i may be readily computed either

analytically or numerically, with its components in the local d i
α direction then modifying R from

Eq. (20) accordingly.
Clamping the filament at the base is somewhat simpler, in that the overall force and moment

balance conditions on the filament are merely replaced by enforcing no motion or rotation at the
base. These conditions may be stated concisely as

ẋ(0) = 0, θ̇1 = φ̇1 = ψ̇1 = 0, (45)

supplanting the force and moment-free conditions of Eqs. (5) and (6), having taken s = 0 in the
latter. Implementing these minor modifications, as an example we specify a travelling wave of
internal moment given by ma = 5 sin(s − t )d1 + 5 cos(s − t )d2 and simulate the active motion of a
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FIG. 7. The 3D beating of a clamped filament driven by prescribed active internal moments. Having
specified a traveling wave of out-of-phase sinusoidal active moments ma = 5 sin(s − t )d1 + 5 cos(s − t )d2, an
initially straight filament deforms to a periodic driven motion, with the tip of the filament following a circular
path. Here we have taken ε = 10−2L and N = 50, noting that the filament shape has been resolved smoothly
with this level of discretization. Computation required approximately 8 s on modest hardware, simulating up
until t = 8π . Axes xx, xy, xz correspond to the unit vectors ex, ey, ez, respectively.

clamped filament, taking N = 50 and ε = 10−2L. Snapshots of this eventually periodic motion are
shown in Fig. 7, with the motion simulated up until t = 8π from a straight initial configuration and
with a walltime of around 8 s.

IV. DISCUSSION

In this paper we have seen that the motion of inextensible unshearable filaments in three
dimensions can be concisely described by a coarse-grained framework, building upon the principles
of Moreau et al. [14] in order to minimize numerical stiffness associated with the governing
equations of elastohydrodynamics. This representation was readily implemented via an Euler
angle parametrization, with adaptive basis selection and reparametrization overcoming coordinate
singularities associated with a fixed representation of the dynamics. We have further demonstrated
the efficacy of the proposed deterministic method for basis selection by explicit simulation of
nonplanar filament dynamics, which is able to afford reductions in numerical stiffness even when
separated from singularities of the parametrization. The presented framework retains the flexibility
and extensibility of the formulations of Moreau et al. [14], Hall-McNair et al. [15], Walker et al. [16],
with background flows, active moment generation, body forces, and other effects or constraints
being simple to include in this representation. The simplicity of these possible extensions speaks to
the broad utility of the proposed approach, with potential for use in the simulation of both single
and multiple filamentous bodies in fluid under a wide variety of circumstances and conditions.

In formulating our methodology we have made the simplifying assumption of coupling fluid
dynamics to forces via resistive force theory, which is well known to incur errors logarithmic
in the filament aspect ratio, though variations remain in widespread use [14,30–35]. Resistive
force theories additionally suffer from locality, in that portions of the filament do not directly
interact with one another through the fluid. A natural development of the presented approach would
therefore be the inclusion of nonlocal hydrodynamics, perhaps via the regularized Stokeslet segment
methodology of Cortez [36] as included in the work of Walker et al. [16], or lightweight singular
slender body theories such as those of Tornberg and Shelley [4], Johnson [37], Walker et al. [38].
Such improvements may also include the consideration of confined geometries, with motion in a
half space being of particular pertinence to typical microscopy of flagellated organisms. Despite the
many possible directions for hydrodynamic refinement, we note that the linearity of Stokes flows
necessitates that any relations between forces and velocities be linear, with explicit formulations
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simply giving rise to modified linear operators A that may be readily inserted into the described
framework.

In the wider context of methods for soft filament simulation, the scope of which is illustrated
by the generality of the approach of Gazzola et al. [39], the proposed framework enables rapid
simulation of the subclass of purely inextensible filaments. This modeling assumption has been
demonstrated to be a valid approximation of nearly inextensible filaments in a variety of con-
texts [23], affording greatly improved computational efficiency over previous approaches that we
have compounded here, albeit with reduced hydrodynamic fidelity. However, we expect that the
addition of improved hydrodynamics will have minimal impact on the computational efficiency of
the presented methodology, with this efficiency not being derived from our use of simple resistive
force theory, as noted by Hall-McNair et al. [15] and Walker et al. [16] for their nonlocal refinements
of the 2D theory of Moreau et al. [14].

In summary, we have presented, verified, and exemplified a framework for the rapid simulation of
inextensible, unshearable filaments in a viscous fluid at zero Reynolds number. Despite the improved
generality of this methodology over existing two-dimensional approaches, we have retained the
computational efficiency and simplicity of the work of Moreau et al. [14], affording significant
extensibility and thus facilitating a vast range of previously unrealizable biological and biophysical
studies into filament dynamics on the microscale.

The computer code used and generated in this paper is freely available from [40].

ACKNOWLEDGMENTS

We are grateful to Prof. Derek Moulton for discussions on elastic filaments, and to Prof. David
Smith for discussions on basis rotation. B.J.W. is supported by Engineering and Physical Sciences
Research Council Grant No. EP/N509711/1. K.I. acknowledges Ministry of Education, Culture,
Sports, Science, and Technology Leading Initiative for Excellent Young Researchers; Japan Society
for the Promotion of Science KAKENHI for Young Researcher (Grant No. JP18K13456); and Japan
Science and Technology Agency PRESTO Grant No. JPMJPR1921. Elements of the simulations
were performed using the cluster computing system within the Research Institute for Mathematical
Sciences, Kyoto University.

APPENDIX: PARAMETERS AND INITIAL CONDITIONS

We nondimensionalize the system of Eq. (37) as in Walker et al. [16], resulting in a dimensionless
system of the form

−EhB̂ÂQ̂ ˙̂� = R̂, Eh = 8πμL4

EI T
(A1)

for timescale T and elastohydrodynamic number Eh, where dimensionless counterparts are given by

B = L2B̂, A = 1

8πμ
Â, Qθ̇ = L

T
Q̂ ˙̂θ, R = EI

L
R̂, (A2)

having multiplied the force balance equations by �s to unify dimensions. All examples begin with
the filament base, x1, coincident with the origin of the laboratory frame, and we set Poisson’s ratio
to zero, i.e., σ = 0, throughout, though note a lack of sensitivity of results to this choice.

1. Relaxation of a planar filament

In simulating the relaxation of a filament in the exey plane, we impose the initial filament shape
as

θi = π/2, φi = π

2

(
i − 1

N − 1
− 1

2

)
, ψi = 0, for i = 1, . . . , N (A3)
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with respect to standard laboratory Euler angles. Filament motion is simulated with Eh ≈
1.6 × 10−5, though this choice is arbitrary given the invariance of the dynamics to rescalings in
time (assuming that the rescaling is not so extreme as to break the inertialess assumption).

2. Planar bending of a filament in shear flow

In order to generate the characteristic behaviors of the J shape and U turn we initialize the
filament via

θi = π/4, φi = − π

12

i − 1

N − 1
, ψi = 0, for i = 1, . . . , N. (A4)

We align a background shear flow in the same plane as the filament, proportional in strength to the
coordinate in the ey direction, denoted y. Explicitly, this flow ub is given in the laboratory frame in
dimensionless form by

ub = 1√
2

y(ex + ez ), (A5)

having taken the timescale T to be the inverse of the dimensional shear rate. Simulation proceeds
with Eh ≈ 4.7 × 105, consistent with the regime found in Liu et al. [28], and we note that the tip of
the filament initially curves into the oncoming background flow in y < 0.

3. Relaxation of a nonplanar filament

Taking N = 100 segments, we impose the helical initial condition

θi = π/3, φi = 2π
i − 1

N − 1
, ψi = 0, for i = 1, . . . , N. (A6)

We simulate filament motion with Eh ≈ 3.1 × 104, with results insensitive to this choice. The
parameters used in the implementation of Ishimoto and Gaffney [21] are as in their publication,
with the image system for a plane wall accordingly removed and the actively generated torques set
to zero to allow for filament relaxation in free space. In particular, while the filaments of Ishimoto
and Gaffney [21] are extensible, the extensional modulus of these filaments is sufficiently high so
as to provide near inextensibility in their results, enabling meaningful comparison.

4. Relaxation of a nonstraight filament

Taking N = 70 segments, we impose the straight initial condition

θi = π/2, φi = 0, ψi = 0, for i = 1, . . . , N. (A7)

The intrinsic curvature is specified as κ0 = πd2 + 2πd3. We simulate filament motion with Eh ≈
1.5 × 105, with results insensitive to this choice.

5. Active beating of a clamped filament

Taking N = 50 segments, we impose the straight initial condition

θi = π/2, φi = 0, ψi = 0, for i = 1, . . . , N. (A8)

The active moment density is specified as ma = 5 sin(s − t )d1 + 5 cos(s − t )d2. We simulate fila-
ment motion with Eh = 103 up until t = 8π .
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